Journal of International Oncology ›› 2024, Vol. 51 ›› Issue (12): 769-773.doi: 10.3760/cma.j.cn371439-20240522-00130
• Reviews • Previous Articles Next Articles
Chen Liang, Li Yingge, Zheng Sihao, Zhang Cai, Yan Qilu, Song Qibin, Yao Yi()
Received:
2024-05-22
Revised:
2024-06-14
Online:
2024-12-08
Published:
2025-01-07
Contact:
Yao Yi
E-mail:yaoyi2018@whu.edu.cn
Supported by:
Chen Liang, Li Yingge, Zheng Sihao, Zhang Cai, Yan Qilu, Song Qibin, Yao Yi. Protein S-palmitoylation and its role in tumor[J]. Journal of International Oncology, 2024, 51(12): 769-773.
[1] |
Hanahan D. Hallmarks of cancer: new dimensions[J]. Cancer Discov, 2022, 12(1): 31-46. DOI: 10.1158/2159-8290.CD-21-1059.
pmid: 35022204 |
[2] |
Geffen Y, Anand S, Akiyama Y, et al. Pan-cancer analysis of post-translational modifications reveals shared patterns of protein regulation[J]. Cell, 2023, 186(18): 3945-3967.e26. DOI: 10.1016/j.cell.2023.07.013.
pmid: 37582358 |
[3] | Zaballa ME, van der Goot FG. The molecular era of protein S-acylation: spotlight on structure, mechanisms, and dynamics[J]. Crit Rev Biochem Mol Biol, 2018, 53(4): 420-451. DOI: 10.1080/10409238.2018.1488804. |
[4] | Main A, Fuller W. Protein S-palmitoylation: advances and challenges in studying a therapeutically important lipid modification[J]. FEBS J, 2022, 289(4): 861-882. DOI: 10.1111/febs.15781. |
[5] | Puthenveetil R, Gómez-Navarro N, Banerjee A. Access and utilization of long chain fatty acyl-CoA by zDHHC protein acyltransferases[J]. Curr Opin Struct Biol, 2022, 77: 102463. DOI: 10.1016/j.sbi.2022.102463. |
[6] | Salaun C, Locatelli C, Zmuda F, et al. Accessory proteins of the zDHHC family of S-acylation enzymes[J]. J Cell Sci, 2020, 133(22): jcs251819. DOI: 10.1242/jcs.251819. |
[7] | Zmuda F, Chamberlain LH. Regulatory effects of post-translational modifications on zDHHC S-acyltransferases[J]. J Biol Chem, 2020, 295(43): 14640-14652. DOI: 10.1074/jbc.REV120.014717. |
[8] | Liao D, Huang Y, Liu D, et al. The role of S-palmitoylation in neurological diseases: implication for zDHHC family[J]. Front Pharmacol, 2024: 1342830. DOI: 10.3389/fphar.2023.1342830. |
[9] |
Jin J, Zhi X, Wang X, et al. Protein palmitoylation and its pathophysiological relevance[J]. J Cell Physiol, 2021, 236(5): 3220-3233. DOI: 10.1002/jcp.30122.
pmid: 33094504 |
[10] | Won SJ, Cheung See Kit M, Martin BR. Protein depalmitoylases[J]. Crit Rev Biochem Mol Biol, 2018, 53(1): 83-98. DOI: 10.1080/10409238.2017.1409191. |
[11] | Ko PJ, Dixon SJ. Protein palmitoylation and cancer[J]. EMBO Rep, 2018, 19(10): e46666. DOI: 10.15252/embr.201846666. |
[12] |
Tate EW, Soday L, de la Lastra AL, et al. Protein lipidation in cancer: mechanisms, dysregulation and emerging drug targets[J]. Nat Rev Cancer, 2024, 24(4): 240-260. DOI: 10.1038/s41568-024-00666-x.
pmid: 38424304 |
[13] |
Punekar SR, Velcheti V, Neel BG, et al. The current state of the art and future trends in RAS-targeted cancer therapies[J]. Nat Rev Clin Oncol, 2022, 19(10): 637-655. DOI: 10.1038/s41571-022-00671-9.
pmid: 36028717 |
[14] |
Zhou Y, Hancock JF. RAS nanoclusters are cell surface transducers that convert extracellular stimuli to intracellular signalling[J]. FEBS Lett, 2023, 597(6): 892-908. DOI: 10.1002/1873-3468.14569.
pmid: 36595205 |
[15] |
Remsberg JR, Suciu RM, Zambetti NA, et al. ABHD17 regulation of plasma membrane palmitoylation and N-Ras-dependent cancer growth[J]. Nat Chem Biol, 2021, 17(8): 856-864. DOI: 10.1038/s41589-021-00785-8.
pmid: 33927411 |
[16] |
Goloshvili G, Barbakadze T, Mikeladze D. Sodium nitroprusside induces H-Ras depalmitoylation and alters the cellular response to hypoxia in differentiated and undifferentiated PC12 cells[J]. Cell Biochem Funct, 2019, 37(7): 545-552. DOI: 10.1002/cbf.3431.
pmid: 31429100 |
[17] | Busquets-Hernández C, Triola G. Palmitoylation as a key regulator of ras localization and function[J]. Front Mol Biosci, 2021, 8: 659861. DOI: 10.3389/fmolb.2021.659861. |
[18] | Zhang M, Zhou L, Xu Y, et al. A STAT3 palmitoylation cycle promotes TH17 differentiation and colitis[J]. Nature, 2020, 586(7829): 434-439. DOI: 10.1038/s41586-020-2799-2. |
[19] | Zhang Z, Li X, Yang F, et al. DHHC9-mediated GLUT1 S-palmitoylation promotes glioblastoma glycolysis and tumorigenesis[J]. Nat Commun, 2021, 12(1): 5872. DOI: 10.1038/s41467-021-26180-4. |
[20] |
Wang L, Cai J, Zhao X, et al. Palmitoylation prevents sustained inflammation by limiting NLRP3 inflammasome activation through chaperone-mediated autophagy[J]. Mol Cell, 2023, 83(2): 281-297.e10. DOI: 10.1016/j.molcel.2022.12.002.
pmid: 36586411 |
[21] | Zhang G, Jiang P, Tang W, et al. CPT1A induction following epigenetic perturbation promotes MAVS palmitoylation and activation to potentiate antitumor immunity[J]. Mol Cell, 2023, 83(23): 4370-4385.e9. DOI: 10.1016/j.molcel.2023.10.043. |
[22] |
Yao H, Lan J, Li C, et al. Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours[J]. Nat Biomed Eng, 2019, 3(4): 306-317. DOI: 10.1038/s41551-019-0375-6.
pmid: 30952982 |
[23] | Kharbanda A, Walter DM, Gudiel AA, et al. Blocking EGFR palmitoylation suppresses PI3K signaling and mutant KRAS lung tumorigenesis[J]. Sci Signal, 2020, 13(621): eaax2364. DOI: 10.1126/scisignal.aax2364. |
[24] | Fan X, Fan J, Yang H, et al. Heterogeneity of subsets in glioblastoma mediated by Smad3 palmitoylation[J]. Oncogenesis, 2021, 10(10): 72. DOI: 10.1038/s41389-021-00361-8. |
[25] | Yuan M, Chen X, Sun Y, et al. ZDHHC12-mediated claudin-3 S-palmitoylation determines ovarian cancer progression[J]. Acta Pharm Sin B, 2020, 10(8): 1426-1439. DOI: 10.1016/j.apsb.2020.03.008. |
[26] |
Pei X, Li KY, Shen Y, et al. Palmitoylation of MDH2 by ZDHHC18 activates mitochondrial respiration and accelerates ovarian cancer growth[J]. Sci China Life Sci, 2022, 65(10): 2017-2030. DOI: 10.1007/s11427-021-2048-2.
pmid: 35366151 |
[27] | Chen L, Xing X, Zhu Y, et al. Palmitoylation alters LDHA activity and pancreatic cancer response to chemotherapy[J]. Cancer Lett, 2024, 587: 216696. DOI: 10.1016/j.canlet.2024.216696. |
[28] | Chen QT, Zhang ZY, Huang QL, et al. HK1 from hepatic stellate cell-derived extracellular vesicles promotes progression of hepatocellular carcinoma[J]. Nat Metab, 2022, 4(10): 1306-1321. DOI: 10.1038/s42255-022-00642-5. |
[29] |
Lin Z, Agarwal S, Tan S, et al. Palmitoyl acyltransferase ZDHHC7 inhibits androgen receptor and suppresses prostate cancer[J]. Oncogene, 2023, 42(26): 2126-2138. DOI: 10.1038/s41388-023-02718-2.
pmid: 37198397 |
[30] | Bu J, Zhong W, Li M, et al. CD82 palmitoylation site mutations at Cys5+Cys74 affect EGFR internalization and metabolism through recycling pathway[J]. Acta Biochim Biophys Sin (Shanghai), 2022, 54(3): 400-408. DOI: 10.3724/abbs.2022011. |
[31] | Sadeghi RS, Kulej K, Kathayat RS, et al. Wnt5a signaling induced phosphorylation increases APT1 activity and promotes melanoma metastatic behavior[J]. Elife, 2018, 7: e34362. DOI: 10.7554/eLife.34362. |
[32] |
McClellan B, Wilson CN, Brenner AJ, et al. Flotillin-1 palmitoyla-tion is essential for its stability and subsequent tumor promoting capabilities[J]. Oncogene, 2024, 43(14): 1063-1074. DOI: 10.1038/s41388-024-02946-0.
pmid: 38374406 |
[33] | Tomić G, Sheridan C, Refermat AY, et al. Palmitoyl transferase ZDHHC20 promotes pancreatic cancer metastasis[J]. Cell Rep, 2024, 43(5): 114224. DOI: 10.1016/j.celrep.2024.114224. |
[34] | Sun Y, Zhang H, Meng J, et al. S-palmitoylation of PCSK9 induces sorafenib resistance in liver cancer by activating the PI3K/AKT pathway[J]. Cell Rep, 2022, 40(7): 111194. DOI: 10.1016/j.celrep.2022.111194. |
[35] | Kadry YA, Lee JY, Witze ES. Regulation of EGFR signalling by palmitoylation and its role in tumorigenesis[J]. Open Biol, 2021, 11(10): 210033. DOI: 10.1098/rsob.210033. |
[36] | Sun Y, Zhu L, Liu P, et al. ZDHHC2-mediated AGK palmitoylation activates AKT-mTOR signaling to reduce sunitinib sensitivity in renal cell carcinoma[J]. Cancer Res, 2023, 83(12): 2034-2051. DOI: 10.1158/0008-5472.CAN-22-3105. |
[37] | Zhao C, Yu H, Fan X, et al. GSK3 β palmitoylation mediated by ZDHHC4 promotes tumorigenicity of glioblastoma stem cells in temozolomide-resistant glioblastoma through the EZH2-STAT3 axis[J]. Oncogenesis, 2022, 11(1): 28. DOI: 10.1038/s41389-022-00402-w. |
[38] |
Yang Y, Hsu JM, Sun L, et al. Palmitoylation stabilizes PD-L1 to promote breast tumor growth[J]. Cell Res, 2019, 29(1): 83-86. DOI: 10.1038/s41422-018-0124-5.
pmid: 30514902 |
[39] |
Du W, Hua F, Li X, et al. Loss of optineurin drives cancer immune evasion via palmitoylation-dependent IFNGR1 lysosomal sorting and degradation[J]. Cancer Discov, 2021, 11(7): 1826-1843. DOI: 10.1158/2159-8290.CD-20-1571.
pmid: 33627378 |
[40] |
Fan Y, Gao Y, Nie L, et al. Targeting LYPLAL1-mediated cGAS depalmitoylation enhances the response to anti-tumor immunotherapy[J]. Mol Cell, 2023, 83(19): 3520-3532.e7. DOI: 10.1016/j.molcel.2023.09.007.
pmid: 37802025 |
[1] | Wei Wei, Cai Zhaoying, Qian Yayun. Effect of Marsdenia tenacissima combined with XELOX solution on disulfide apoptosis in human colorectal cancer HCT116 cells [J]. Journal of International Oncology, 2024, 51(9): 545-555. |
[2] | Yin Hao, Wu Xudong, Wang Lei. Clinical efficacy and safety analysis of helical tomotherapy for esophageal cancer [J]. Journal of International Oncology, 2024, 51(9): 578-584. |
[3] | Shi Xuebing, Wu Jing, Deng Wenxia. Relationship between Vav3 and malignant tumors [J]. Journal of International Oncology, 2024, 51(9): 585-589. |
[4] | Han Xiaoxu, Zhang Nan, Liu Shuai. Progress in the study of the pregnane X receptor in drug resistance in breast cancer [J]. Journal of International Oncology, 2024, 51(9): 590-594. |
[5] | Wu Yang, Li Tian, Zhang Runbing, Shi Tingting, Gao Chun, Zheng Xiaofeng, Zhang Jiucong. Research progress in immunotherapy and targeted therapy for gastric cancer and esophagogastric junction cancer [J]. Journal of International Oncology, 2024, 51(9): 595-600. |
[6] | Zhan Haifeng, Wang Wenxue, Geng Jiawei. Research progress in precise molecular targeted therapy for advanced colorectal cancer [J]. Journal of International Oncology, 2024, 51(9): 601-605. |
[7] | Liu Wenhui, Yin Ping, Qi Jie. Diagnostic value of detection of serum G-17,sB7-H3,and DKK1 for early gastric cancer [J]. Journal of International Oncology, 2024, 51(8): 498-503. |
[8] | Wang Yan. Differential diagnostic value of transvaginal ultrasound elastography combined with serum miR-144-3p,CMTM6 for cervical precancerous lesions and cervical cancer [J]. Journal of International Oncology, 2024, 51(8): 504-509. |
[9] | Wang Qiushi, Xu Ruitao, Li Song, Chu Jiahui, Liu Lian. Research progress of immune checkpoint inhibitor-related multi-organ adverse events [J]. Journal of International Oncology, 2024, 51(8): 510-514. |
[10] | Li Zhiwei, Zhai Chunbao. Research progress on the anti-cancer effect of traditional Chinese medicine polyphenols on colorectal cancer [J]. Journal of International Oncology, 2024, 51(8): 526-531. |
[11] | Peng Dan, Lyu Lu, Sun Pengfei. Research progress of radiomics in cervical cancer [J]. Journal of International Oncology, 2024, 51(8): 532-537. |
[12] | Saber Amin, Chi Lin. Trends of the use of proton beam radiation therapy in patients with central nervous system tumors: analysis of National Cancer Database (2004-2021) [J]. Journal of International Oncology, 2024, 51(7): 424-431. |
[13] | Liang Xinyu, Wei Zhigang, Ye Xin. Current situation and countermeasure of overdiagnosis and overtreatment of pulmonary ground-glass nodule [J]. Journal of International Oncology, 2024, 51(7): 432-440. |
[14] | Zhao Biao, Pu Qin, Yuan Meifang, Ma Lishuang, Li Han, Yang Yi, Sun Chaoxi. Dosimetric study of intensity-modulated radiotherapy and volumetric intensity modulated arc therapy based on the inner edge tangent field for radiotherapy after breast-conserving surgery of left-sided breast cancer [J]. Journal of International Oncology, 2024, 51(7): 441-447. |
[15] | Du Qilian, Hu Qinyong. Tumor-infiltrating immune cells from a single-cell perspective [J]. Journal of International Oncology, 2024, 51(7): 458-463. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||