Journal of International Oncology ›› 2024, Vol. 51 ›› Issue (7): 432-440.doi: 10.3760/cma.j.cn371439-20240509-00071
• Expert Editorial • Previous Articles Next Articles
Liang Xinyu, Wei Zhigang(), Ye Xin()
Received:
2024-05-09
Revised:
2024-05-28
Online:
2024-07-08
Published:
2024-08-14
Contact:
Wei Zhigang, Email: weizhigang321321@163.com;Ye Xin, Email: yexintaian2020@163.com
Supported by:
Liang Xinyu, Wei Zhigang, Ye Xin. Current situation and countermeasure of overdiagnosis and overtreatment of pulmonary ground-glass nodule[J]. Journal of International Oncology, 2024, 51(7): 432-440.
[1] | World Health Organization. Data visualization tools for exploring the global cancer burden in 2022[EB/OL]. (2024-02-01) [2024-05-08]. https://gco.iarc.who.int/today/home. |
[2] |
Leiter A, Veluswamy RR, Wisnivesky JP. The global burden of lung cancer: current status and future trends[J]. Nat Rev Clin Oncol, 2023, 20(9): 624-639. DOI: 10.1038/s41571-023-00798-3.
pmid: 37479810 |
[3] | 郑荣寿, 陈茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2024, 46(3): 221-231. DOI: 10.3760/cma.j.cn112152-20240119-00035. |
[4] | National Lung Screening Trial Research Team; Aberle DR, Adams AM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening[J]. N Engl J Med, 2011, 365(5): 395-409. DOI: 10.1056/NEJMoa1102873. |
[5] | He YT, Zhang YC, Shi GF, et al. Risk factors for pulmonary nodules in north China: a prospective cohort study[J]. Lung Cancer, 2018, 120: 122-129. DOI: 10.1016/j.lungcan.2018.03.021. |
[6] | Yang W, Qian F, Teng J, et al. Community-based lung cancer screening with low-dose CT in China: results of the baseline scree-ning[J]. Lung Cancer, 2018, 117: 20-26. DOI: 10.1016/j.lungcan.2018.01.003. |
[7] |
Fan L, Wang Y, Zhou Y, et al. Lung cancer screening with low-dose CT: baseline screening results in Shanghai[J]. Acad Radiol, 2019, 26(10): 1283-1291. DOI: 10.1016/j.acra.2018.12.002.
pmid: 30554839 |
[8] | 徐国厚, 黄海峡, 陈斌, 等. 单体检中心23 695例体检者首次胸部低剂量CT筛查结果及肺结节相关易感因素的研究[J]. 复旦学报(医学版), 2020, 47(5): 654-659, 668. DOI: 10.3969/j.issn.1672-8467.2020.05.003. |
[9] |
Liang X, Kong Y, Shang H, et al. Computed tomography findings, associated factors, and management of pulmonary nodules in 54,326 healthy individuals[J]. J Cancer Res Ther, 2022, 18(7): 2041-2048. DOI: 10.4103/jcrt.jcrt_1586_22.
pmid: 36647968 |
[10] | 胡军, 王晓冬. 济南市区域成年健康查体人群胸部CT检出肺局灶性磨玻璃密度结节情况[J]. 中国临床研究, 2021, 34(9): 1190-1193, 1198. DOI: 10.13429/j.cnki.cjcr.2021.09.008. |
[11] |
MacMahon H, Naidich DP, Goo JM, et al. Guidelines for Management of Incidental Pulmonary Nodules Detected on CT Images: from the Fleischner Society 2017[J]. Radiology, 2017, 284(1): 228-243. DOI: 10.1148/radiol.2017161659.
pmid: 28240562 |
[12] |
Kim H, Park CM, Woo S, et al. Pure and part-solid pulmonary ground-glass nodules: measurement variability of volume and mass in nodules with a solid portion less than or equal to 5 mm[J]. Radiology, 2013, 269(2): 585-593. DOI: 10.1148/radiology.13121849.
pmid: 23864104 |
[13] | 叶欣, 王俊, 危志刚, 等. 热消融治疗肺部亚实性结节专家共识(2021年版)[J]. 中国肺癌杂志, 2021, 24(5): 305-322. DOI: 10.3779/j.issn.1009-3419.2021.101.14. |
[14] | 中国医药教育协会肺癌医学教育委员会, 中国胸外科肺癌联盟, 中国抗癌协会肿瘤消融治疗专业委员会, 等. 多发磨玻璃结节样肺癌多学科诊疗中国专家共识(2024年版)[J]. 中华内科杂志, 2024, 63(2): 153-169. DOI: 10.3760./cma.j.cn112138-20230907-00116. |
[15] |
Klotz L. Cancer overdiagnosis and overtreatment[J]. Curr Opin Urol, 2012, 22(3): 203-209. DOI: 10.1097/MOU.0b013e32835259aa.
pmid: 22472510 |
[16] | Housten AJ, Lowenstein LM, Hoffman A, et al. A review of the presentation of overdiagnosis in cancer screening patient decision aids[J]. MDM Policy Pract, 2019, 4(2): 2381468319881447. DOI: 10.1177/2381468319881447. |
[17] | Paci E. Can we prevent the usual conundrum on overdiagnosis in lung cancer screening?[J]. J Thorac Imaging, 2022, 37(6): W92-W93. DOI: 10.1097/RTI.0000000000000668. |
[18] | Ye X, Fan W, Wang Z, et al. Expert consensus on thermal ablation therapy of pulmonary subsolid nodules (2021 edition)[J]. J Can Res Ther, 2021, 17: 1141-1156. DOI: 10.4103/jcrt.jcrt_1485_21. |
[19] |
Jonas DE, Reuland DS, Reddy SM, et al. Screening for lung cancer with low-dose computed tomography: updated evidence report and systematic review for the US preventive services task force[J]. JAMA, 2021, 325(10): 971-987. DOI: 10.1001/jama.2021.0377.
pmid: 33687468 |
[20] | Brodersen J, Voss T, Martiny F, et al. Overdiagnosis of lung cancer with low-dose computed tomography screening: meta-analysis of the randomised clinical trials[J]. Breathe (Sheeff), 2020, 16(1): 200013. DOI:10.1183/20734735.0013-2020. |
[21] | Bonney A, Malouf R, Marchal C, et al. Impact of low-dose computed tomography (LDCT) screening on lung cancer-related mortality[J]. Cochrane Database Syst Rev, 2022, 8(8): CD013829. DOI: 10.1002/14651858.CD013829.pub2. |
[22] | Liang X, Zhang C, Ye X. Overdiagnosis and overtreatment of ground-glass nodule-like lung cancer[J/OL]. Asia Pac J Clin Oncol. (2024-01-04) [2024-05-06]. DOI: 10.1111/ajco.14042. |
[23] | Wang M, Lin S, He N, et al. The introduction of low-dose CT imaging and lung cancer overdiagnosis in Chinese women[J]. Chest, 2023, 163(1): 239-250. DOI: 10.1016/j.chest.2022.08.2207. |
[24] | Kianzad A, Meijboom LJ, Nossent EJ, et al. COVID-19: histopathological correlates of imaging patterns on chest computed tomography[J]. Respirology, 2021, 26(9): 869-877. DOI: 10.1111/resp.14101. |
[25] |
Yankelevitz DF, Yip R, Smith JP, et al. CT screening for lung cancer: nonsolid nodules in baseline and annual repeat rounds[J]. Radiology, 2015, 277(2): 555-564. DOI: 10.1148/radiol.2015 142554.
pmid: 26101879 |
[26] | 刘宝东, 陈海泉, 刘伦旭, 等. 肺结节多学科微创诊疗中国专家共识[J]. 中国胸心血管外科临床杂志, 2023, 30(8): 1061-1074. DOI: 10.7507/1007-4848.202306006. |
[27] | Rampariag R, Chernyavskiy I, Al-Ajam M, et al. Controversies and challenges in lung cancer screening[J]. Semin Oncol, 2022: S0093-7754(22)00056-2. DOI: 10.1053/j.seminoncol.2022.07.002. |
[28] | Ewals LJS, van der Wulp K, van den Borne BEEM, et al. The effects of artificial intelligence assistance on the radiologists' assessment of lung nodules on CT scans: a systematic review[J]. J Clin Med, 2023, 12(10): 3536. DOI:10.3390/jcm12103536. |
[29] | Wang X, Gao M, Xie J, et al. Development, validation, and comparison of image-based, clinical feature-based and fusion artificial intelligence diagnostic models in differentiating benign and malignant pulmonary ground-glass nodules[J]. Front Oncol, 2022, 12: 892890. DOI: 10.3389/fonc.2022.892890. |
[30] | Singh R, Kalra MK, Homayounieh F, et al. Artificial intelligence-based vessel suppression for detection of sub-solid nodules in lung cancer screening computed tomography[J]. Quant Imaging Med Surg, 2021, 11(4): 1134-1143. DOI: 10.21037/qims-20-630. |
[31] | Cellina M, Cacioppa LM, Cè M, et al. Artificial intelligence in lung cancer screening: the future is now[J]. Cancers (Basel), 2023, 15(17): 4344. DOI:10.3390/cancers15174344. |
[32] | Quanyang W, Yao H, Sicong W, et al. Artificial intelligence in lung cancer screening: detection, classification, prediction, and prognosis[J]. Cancer Med, 2024, 13(7): e7140. DOI: 10.1002/cam4.7140. |
[33] |
Grenier PA, Brun AL, Mellot F. The contribution of artificial intelligence (AI) subsequent to the processing of thoracic imaging[J]. Rev Mal Respir, 2024, 41(2): 110-126. DOI: 10.1016/j.rmr.2023.12.001.
pmid: 38129269 |
[34] |
Patz EF Jr, Pinsky P, Gatsonis C, et al. Overdiagnosis in low-dose computed tomography screening for lung cancer[J]. JAMA Intern Med, 2014, 174(2): 269-274. DOI: 10.1001/jamainternmed.2013.12738.
pmid: 24322569 |
[35] |
Yatabe Y, Borczuk AC, Powell CA. Do all lung adenocarcinomas follow a stepwise progression?[J]. Lung Cancer, 2011, 74(1): 7-11. DOI: 10.1016/j.lungcan.2011.05.021.
pmid: 21705107 |
[36] |
Nie M, Yao K, Zhu X, et al. Evolutionary metabolic landscape from preneoplasia to invasive lung adenocarcinoma[J]. Nat Commun, 2021, 12(1): 6479. DOI:10.1038/s41467-021-26685-y.
pmid: 34759281 |
[37] | Chen P, Rojas FR, Hu X, et al. Pathomic features reveal immune and molecular evolution from lung preneoplasia to invasive adenocarcinoma[J]. Mod Pathol, 2023, 36(12): 100326. DOI:10.1016/j.modpat.2023.100326. |
[38] |
Yang X, Xiao Y, Hu H, et al. Expression changes in programmed death ligand 1 from precancerous lesions to invasive adenocarcinoma in subcentimeter pulmonary nodules: a large study of 2022 cases in China[J]. Ann Surg Oncol, 2023, 30(12): 7400-7411. DOI: 10.1245/s10434-023-14009-x.
pmid: 37658270 |
[39] |
Yu Y, Wang N, Huang N, et al. Determining the invasiveness of ground-glass nodules using a 3D multi-task network[J]. Eur Radiol, 2021, 31(9): 7162-7171. DOI: 10.1007/s00330-021-07794-0.
pmid: 33665717 |
[40] |
Zhang Y, Deng C, Fu F, et al. Excellent prognosis of patients with invasive lung adenocarcinomas during surgery misdiagnosed as atypical adenomatous hyperplasia, adenocarcinoma in situ, or minimally invasive adenocarcinoma by frozen section[J]. Chest, 2021, 159(3): 1265-1272. DOI: 10.1016/j.chest.2020.10.076.
pmid: 33197404 |
[41] | Zhang Y, Ma X, Shen X, et al. Surgery for pre- and minimally invasive lung adenocarcinoma[J]. J Thorac Cardiovasc Surg, 2022, 163(2): 456-464. DOI: 10.1016/j.jtcvs.2020.11.151. |
[42] |
Li D, Deng C, Wang S, et al. Ten-year follow-up results of pure ground-glass opacity-featured lung adenocarcinomas after surgery[J]. Ann Thorac Surg, 2023, 116(2): 230-237. DOI: 10.1016/j.athoracsur.2023.01.014.
pmid: 36646243 |
[43] | Zhang Y, Chen Z, Hu H, et al. Surgical strategies for pre- and minimally invasive lung adenocarcinoma 3.0: lessons learned from the optimal timing of surgical intervention[J]. Semin Thorac Cardiovasc Surg, 2022, 34(1): 311-314. DOI: 10.1053/j.semtcvs.2020.12.009. |
[44] | Aokage K, Suzuki K, Saji H, et al. Segmentectomy for ground-glass-dominant lung cancer with a tumour diameter of 3 cm or less including ground-glass opacity (JCOG1211): a multicentre, single-arm, confirmatory, phase 3 trial[J]. Lancet Respir Med, 2023, 11(6): 540-549. DOI: 10.1016/S2213-2600(23)00041-3. |
[45] | Altorki N, Vimolratana M. Commentary: surgery for ground-glass nodules: free lunch or slippery slope?[J]. J Thorac Cardiovasc Surg, 2022, 163(2): 465-466. DOI: 10.1016/j.jtcvs.2020.12.073. |
[46] |
Chang B, Hwang JH, Choi Y, et al. Natural history of pure ground-glass opacity lung nodules detected by low-dose CT scan[J]. Chest, 2013, 143(1): 172-178. DOI: 10.1378/chest.11-2501.
pmid: 22797081 |
[47] | Wei B, Muñoz-Largacha JA. Commentary: sublobar resection for in situ and minimally invasive adenocarcinoma—less is more[J]. J Thorac Cardiovasc Surg, 2022, 163(2): 467-468. DOI: 10.1016/j.jtcvs.2021.01.005. |
[48] | Veeramachaneni NK. Commentary: computed tomography screening for lung cancer at large in China: early cure or definitive overtreatment?[J]. J Thorac Cardiovasc Surg, 2022, 163(2): 466-467. DOI: 10.1016/j.jtcvs.2021.01.008. |
[49] | Rusch VW. Commentary: lobectomy, segmentectomy, or wedge resection for stage ⅠA lung cancer: several choices, many questions[J]. J Thorac Cardiovasc Surg, 2024, 167(1): 348-349. DOI: 10.1016/j.jtcvs.2023.07.039. |
[50] | Garcia-Alamino JM, López-Cano M. Overdiagnosis and overtreatment—more is better?[J]. Cir Esp (Engl Ed), 2022, 100(12): 793-794. DOI: 10.1016/j.cireng.2022.06.053. |
[51] |
Lubowitz JH, Brand JC, Rossi MJ. Stop overtreatment, overdiagnosis, and the medicalization of "normal" to improve health care outcomes. Hippocrasy: the book[J]. Arthroscopy, 2022, 38(8): 2361-2364. DOI: 10.1016/j.arthro.2022.06.006.
pmid: 35940733 |
[52] | Nakazawa S, Shimizu K, Mogi A, et al. VATS segmentectomy: past, present, and future[J]. Gen Thorac Cardiovasc Surg, 2018, 66(2): 81-90. DOI: 10.1007/s11748-017-0878-6. |
[53] | Kent MS, Hartwig MG, Vallières E, et al. Pulmonary open, robotic, and thoracoscopic lobectomy (PORTaL) study: survival analysis of 6646 cases[J]. Ann Surg, 2023, 277(6): 1002-1009. DOI: 10.1097/SLA.0000000000005820. |
[54] |
D'Amico TA. The video-assisted thoracoscopic or open lobectomy (VIOLET) trial: the final chapter to this epic[J]. J Thorac Cardiovasc Surg, 2023, 166(1): 265-267. DOI: 10.1016/j.jtcvs.2022.12.022.
pmid: 36774208 |
[55] |
Bainbridge D, Martin J, Arango M, et al. Perioperative and anaesthetic-related mortality in developed and developing countries: a systematic review and meta-analysis[J]. Lancet, 2012, 380(9847): 1075-1081. DOI: 10.1016/S0140-6736(12)60990-8.
pmid: 22998717 |
[56] |
Harris M, Chung F. Complications of general anesthesia[J]. Clin Plast Surg, 2013, 40(4): 503-513. DOI: 10.1016/j.cps.2013.07.001.
pmid: 24093647 |
[57] | Committee for Scientific Affairs, The Japanese Association for Thoracic Surgery; Matsumiya G, Sato Y, et al. Thoracic and cardiovascular surgeries in Japan during 2020: annual report by the Japanese Association for Thoracic Surgery[J]. Gen Thorac Cardiovasc Surg, 2024, 72(1): 61-94. DOI: 10.1007/s11748-023-01979-8. |
[58] |
Altorki NK, Wang X, Wigle D, et al. Perioperative mortality and morbidity after sublobar versus lobar resection for early-stage non-small-cell lung cancer: post-hoc analysis of an international, randomised, phase 3 trial (CALGB/Alliance 140503)[J]. Lancet Respir Med, 2018, 6(12): 915-924. DOI: 10.1016/S2213-2600(18)30411-9.
pmid: 30442588 |
[59] |
Donington J, Schumacher L, Yanagawa J. Surgical issues for operable early-stage non-small-cell lung cancer[J]. J Clin Oncol, 2022, 40(6): 530-538. DOI: 10.1200/JCO.21.01592.
pmid: 34985938 |
[60] | Armand E, Boulate D, Fourdrain A, et al. Benignant and malignant epidemiology among surgical resections for suspicious solitary lung cancer without preoperative tissue diagnosis[J]. Eur J Cardiothorac Surg, 2022, 63(1): ezac590. DOI: 10.1093/ejcts/ezac590. |
[61] |
Barta JA, Henschke CI, Flores RM, et al. Lung cancer diagnosis by fine needle aspiration is associated with reduction in resection of nonmalignant lung nodules[J]. Ann Thorac Surg, 2017, 103(6): 1795-1801. DOI: 10.1016/j.athoracsur.2016.11.055.
pmid: 28274517 |
[62] | Till BM, Grenda T, Tidwell T, et al. Brief report: nonmalignant surgical resection among individuals with screening-detected versus incidental lung nodules[J]. Clin Lung Cancer, 2023: e129-e132.e4. DOI: 10.1016/j.cllc.2023.12.006. |
[63] | Ma Z, Zhang Y, Huang Q, et al. Decreasing prevalence of benign etiology in resected lung nodules suspicious for lung cancer over the last decade[J]. Semin Thorac Cardiovasc Surg, 2022, 34(3):1093-1099. DOI: 10.1053/j.semtcvs.2021.06.024. |
[64] | Zhang R, Ferguson MK. Video-assisted versus open lobectomy in patients with compromised lung function: a literature review and meta-analysis[J]. PLoS One, 2015, 10(7): e0124512. DOI: 10.1371/journal.pone.0124512. |
[65] | Charloux A, Quoix E. Lung segmentectomy: does it offer a real functional benefit over lobectomy?[J]. Eur Respir Rev, 2017, 26(146): 170079. DOI:10.1183/16000617.0079-2017. |
[66] | Dai SY, Tseng YL, Chang CC, et al. Pulmonary-function changes after uniportal video-assisted thoracoscopic anatomical lung resection[J]. Asian J Surg, 2023, 46(4): 1571-1576. DOI: 10.1016/j.asjsur.2022.09.075. |
[67] |
Menna C, Ibrahim M, Rendina EA, et al. Cost/efficacy evaluation of the technologies applied to video-assisted thoracoscopic surgery lobectomy[J]. J Vis Surg, 2017, 3: 152. DOI: 10.21037/jovs.2017.09.05.
pmid: 29302428 |
[68] | Heiden BT, Mitchell JD, Rome E, et al. Cost-effectiveness analysis of robotic-assisted lobectomy for non-small cell lung cancer[J]. Ann Thorac Surg, 2022, 114(1): 265-272. DOI: 10.1016/j.athoracsur.2021.06.090. |
[69] |
Patel YS, Baste JM, Shargall Y, et al. Robotic lobectomy is cost-effective and provides comparable health utility scores to video-assisted lobectomy: early results of the RAVAL trial[J]. Ann Surg, 2023, 278(6): 841-849. DOI: 10.1097/SLA.0000000000006073.
pmid: 37551615 |
[70] |
Bendixen M, Kronborg C, Jørgensen OD, et al. Cost-utility analysis of minimally invasive surgery for lung cancer: a randomized controlled trial[J]. Eur J Cardiothorac Surg, 2019, 56(4): 754-761. DOI: 10.1093/ejcts/ezz064.
pmid: 30838382 |
[71] |
Kajiwara N, Patrick Barron J, Kato Y, et al. Cost-benefit performance of robotic surgery compared with video-assisted thoracoscopic surgery under the Japanese national health insurance system[J]. Ann Thorac Cardiovasc Surg, 2015, 21(2): 95-101. DOI: 10.5761/atcs.oa.14-00076.
pmid: 24835923 |
[72] | Han X, Wei Z, Zhao Z, et al. Cost and effectiveness of microwave ablation versus video-assisted thoracoscopic surgical resection for ground-glass nodule lung adenocarcinoma[J]. Front Oncol, 2022, 12: 962630. DOI: 10.3389/fonc.2022.962630. |
[73] | Chen W, Yu Z, Zhang Y, et al. Comparison of cost effectiveness between video-assisted thoracoscopic surgery (vats) and open lobectomy: a retrospective study[J]. Cost Eff Resour Alloc, 2021, 19(1): 55. DOI:10.1186/s12962-021-00307-2. |
[74] |
Chen D, Kang P, Tao S, et al. Cost-effectiveness evaluation of robotic-assisted thoracoscopic surgery versus open thoracotomy and video-assisted thoracoscopic surgery for operable non-small cell lung cancer[J]. Lung Cancer, 2021, 153: 99-107. DOI: 10.1016/j.lungcan.2020.12.033.
pmid: 33482409 |
[75] | Han Z, Lu J, Chen S, et al. Safety and economic analysis of the EasyEndo disposable endoscopic cutting and stapling device for VATS lobectomy or segmentectomy in lung cancer patients: a retrospective study[J]. Front Oncol, 2023, 13: 1247450. DOI: 10.3389/fonc.2023.1247450. |
[76] | Linden W, Vodermaier A, Mackenzie R, et al. Anxiety and depression after cancer diagnosis: prevalence rates by cancer type, gender, and age[J]. J Affect Disord, 2012, 141(2-3): 343-351. DOI: 10.1016/j.jad.2012.03.025. |
[77] | Wang YH, Li JQ, Shi JF, et al. Depression and anxiety in relation to cancer incidence and mortality: a systematic review and meta-analysis of cohort studies[J]. Mol Psychiatry, 2020, 25(7): 1487-1499. DOI: 10.1038/s41380-019-0595-x. |
[78] |
Hopkins KG, Ferson PF, Shende MR, et al. Prospective study of quality of life after lung cancer resection[J]. Ann Transl Med, 2017, 5(10): 204. DOI:10.21037/atm.2017.04.34.
pmid: 28603719 |
[79] | Wang F, Tan F, Shen S, et al. Risk-stratified approach for never- and ever-smokers in lung cancer screening: a prospective cohort study in China[J]. Am J Respir Crit Care Med, 2023, 207(1): 77-88. DOI:10.1164/rccm.202204-0727OC. |
[80] | González Maldonado S, Motsch E, Trotter A, et al. Overdiagnosis in lung cancer screening: estimates from the German Lung Cancer Screening Intervention Trial[J]. Int J Cancer, 2021, 148(5): 1097-1105. DOI: 10.1002/ijc.33295. |
[81] | Choi HK, Mazzone PJ. Lung cancer screening[J]. Med Clin North Am, 2022, 106(6): 1041-1053. DOI: 10.1016/j.mcna.2022.07.007. |
[82] | Wang L, Wang Y, Wang F, et al. Disparity in lung cancer screening among smokers and nonsmokers in China: prospective cohort study[J]. JMIR Public Health Surveill, 2023, 9: e43586. DOI: 10.2196/43586. |
[83] | Lewandowska A, Lewandowski T, Zych B, et al. Risk factors for the diagnosis of lung cancer in Poland: a large-scale, population-based case-control study[J]. Asian Pac J Cancer Prev, 2022, 23(10): 3299-3307. DOI: 10.31557/APJCP.2022.23.10.3299. |
[84] |
Bhardwaj M, Schöttker B, Holleczek B, et al. Comparison of discrimination performance of 11 lung cancer risk models for predicting lung cancer in a prospective cohort of screening-age adults from Germany followed over 17 years[J]. Lung Cancer, 2022, 174: 83-90. DOI: 10.1016/j.lungcan.2022.10.011.
pmid: 36356492 |
[85] | Peters S, Letovanec I, Mauer M, et al. Assessment of RANK/RANK-L prevalence and clinical significance in NSCLC European Thoracic Oncology Platform Lungscape cohort and SPLENDOUR randomized clinical trial[J]. Lung Cancer, 2023, 175: 141-151. DOI: 10.1016/j.lungcan.2022.12.004. |
[86] |
Roy E, Shrager J, Benson J, et al. Risk of adenocarcinoma in patients with a suspicious ground-glass opacity: a retrospective review[J]. J Thorac Dis, 2022, 14(11): 4236-4245. DOI: 10.21037/jtd-22-583.
pmid: 36524073 |
[87] | Guo LW, Meng QC, Zheng LY, et al. Special issue “The advance of solid tumor research in China”: participants with a family history of cancer have a higher participation rate in low-dose computed tomography for lung cancer screening[J]. Int J Cancer, 2023, 152(1): 7-14. DOI: 10.1002/ijc.34010. |
[88] |
Su J, Jiang Y, Fan X, et al. Association between physical activity and cancer risk among Chinese adults: a 10-year prospective study[J]. Int J Behav Nutr Phys Act, 2022, 19(1): 150. DOI:10.1186/s12966-022-01390-1.
pmid: 36510257 |
[89] |
Callister MEJ, Sasieni P, Robbins HA. Overdiagnosis in lung cancer screening[J]. Lancet Respir Med, 2021, 9(1): 7-9. DOI: 10.1016/S2213-2600(20)30553-1.
pmid: 33412118 |
[90] |
Asamura H, Hishida T, Suzuki K, et al. Radiographically determined noninvasive adenocarcinoma of the lung: survival outcomes of Japan Clinical Oncology Group 0201[J]. J Thorac Cardiovasc Surg, 2013, 146(1): 24-30. DOI: 10.1016/j.jtcvs.2012.12.047.
pmid: 23398645 |
[91] | Yanagawa M, Kusumoto M, Johkoh T, et al. Radio-logic-pathologic correlation of solid portions on thin-section CT images in lung adenocarcinoma: a multicenter study[J]. Clin Lung Cancer, 2018, 19(3): e303-e312. DOI: 10.1016/j.cllc.2017.12.005. |
[92] |
Devaraj A, Van Ginneken B, Nair A, et al. Use of volumetry for lung nodule management: theory and practice[J]. Radiology, 2017, 284: 630-644. DOI: 10.1148/radiol.2017151022.
pmid: 28825886 |
[93] | Kauczor HU, von Stackelberg O. Subsolid lung nodules: potential for overdiagnosis[J]. Radiology, 2019, 293(2): 449-450. DOI: 10.1148/radiol.2019191877. |
[94] | Ten Haaf K, van der Aalst CM, de Koning HJ, et al. Personalising lung cancer screening: an overview of risk-stratification opportunities and challenges[J]. Int J Cancer, 2021, 149(2): 250-263. DOI: 10.1002/ijc.33578. |
[95] |
Jiang B, Li N, Shi X, et al. Deep learning reconstruction shows better lung nodule detection for ultra-low-dose chest CT[J]. Radiology, 2022, 303(1): 202-212. DOI: 10.1148/radiol.210551.
pmid: 35040674 |
[96] | Chao HS, Tsai CY, Chou CW, et al. Artificial intelligence assisted computational tomographic detection of lung nodules for prognostic cancer examination: a large-scale clinical trial[J]. Biomedicines, 2023, 11(1): 147. DOI:10.3390/biomedicines11010147. |
[97] | 中国物联网辅助肺结节诊治专家组. 物联网辅助肺结节诊治中国专家共识[J]. 国际呼吸杂志, 2017, 37(8): 561-568. DOI:10.3760/cma.j.issn.1673-436X.2017.08.001. |
[98] |
von Itzstein MS, Gerber DE, Minna JD. Contemporary lung cancer screening and the promise of blood-based biomarkers[J]. Cancer Res, 2021, 81(13): 3441-3443. DOI: 10.1158/0008-5472.CAN-21-0706.
pmid: 34252039 |
[99] | Fahrmann JF, Marsh T, Irajizad E, et al. Blood-based biomarker panel for personalized lung cancer risk assessment[J]. J Clin Oncol, 2022, 40(8): 876-883. DOI: 10.1200/JCO.21.01460. |
[100] | van den Broek D, Groen HJM. Screening approaches for lung cancer by blood-based biomarkers: challenges and opportunities[J]. Tumour Biol, 2024, 46(s1): S65-S80. DOI: 10.3233/TUB-230004. |
[101] | Kovac E, Carlsson SV, Lilja H, et al. Association of baseline prostate specific antigen level with long-term diagnosis of clinically significant prostate cancer among patients aged 55 to 60 years: a secondary analysis of a cohort in the prostate, lung, colorectal, and ovarian (PLCO) cancer screening trial[J]. JAMA Netw Open, 2020, 3(1): e1919284. DOI:10.1001/jamanetworkopen.2019.19284. |
[102] |
Shariat SF. From avoiding overtreatment and undertreatment to delivering the right therapy at the right time for the right tumor in the right patient: the age of the thoughtful urologic oncologic surgeon has begun[J]. Eur Urol Focus, 2023, 9(2): 221-222. DOI: 10.1016/j.euf.2023.02.003.
pmid: 36822925 |
[103] | Clapp JT, Schwarze ML, Fleisher LA. Surgical overtreatment and shared decision-making—the limits of choice[J]. JAMA Surg, 2022, 157(1): 5-6. DOI: 10.1001/jamasurg.2021.4425. |
[104] |
Li Z, Zhao F, Wang G, et al. Changes in the pulmonary function of CT-guided microwave ablation for patients with malignant lung tumors[J]. J Cancer Res Ther, 2023, 19(6): 1669-1674. DOI: 10.4103/jcrt.jcrt_2048_23.
pmid: 38156936 |
[105] |
Yang X, Jin Y, Lin Z, et al. Microwave ablation for the treatment of peripheral ground-glass nodule-like lung cancer: long-term results from a multi-center study[J]. J Cancer Res Ther, 2023, 19(4): 1001-1010. DOI: 10.4103/jcrt.jcrt_1436_23.
pmid: 37675729 |
[106] |
Peng H, Wang M, Lu S, et al. Enhanced recovery after surgery for percutaneous CT-guided microwave ablation of lung tumors: a single-center retrospective cohort study[J]. J Cancer Res Ther, 2024, 20(2): 651-657. DOI: 10.4103/jcrt.jcrt_2017_23.
pmid: 38687936 |
[107] |
Zarogoulidis P, Papadopoulos V, Perdikouri EI, et al. Ablation for single pulmonary nodules, primary or metastatic. Εndobronchial ablation systems or percutaneous[J]. J Cancer, 2024, 15(4): 880-888. DOI: 10.7150/jca.90494.
pmid: 38230209 |
[108] |
Ye X, Fan W, Wang Z, et al. Clinical practice guidelines on image-guided thermal ablation of primary and metastatic lung tumors (2022 edition)[J]. J Cancer Res Ther, 2022, 18(5): 1213-1230. DOI: 10.4103/jcrt.jcrt_880_22.
pmid: 36204866 |
[1] | Han Yi, Zhang Tongmei, Qi Fei, Zhang Yong. Advances in clinical molecular diagnosis and treatment of pulmonary large cell neuroendocrine carcinoma [J]. Journal of International Oncology, 2024, 51(7): 468-473. |
[2] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[3] | He Jiahui, Hu Qinyong. Comparative analysis of lung cancer incidence and mortality trends and risk factors in China and the United States based on GBD data [J]. Journal of International Oncology, 2024, 51(1): 29-36. |
[4] | Zuo Xiaoping, Liu Xiaochuan, Wu Xiqiang, Li Zhou, Xia Tian, Liu Guofeng. Risk factors and prediction model construction of arrhythmia in elderly patients with early lung cancer after thoracoscopic pulmonary resection [J]. Journal of International Oncology, 2023, 50(12): 711-716. |
[5] | Chen Yu, Xu Hua, Liu Hai, Chen Shixin. Construction of pathological classification prediction model for malignant pulmonary pure ground-glass nodule patients based on CT imaging [J]. Journal of International Oncology, 2023, 50(11): 655-660. |
[6] | Yang Sha, Yang Xiaohua, Wang Suhua, Xue Xiaoyan, Xu Jun. Analysis of risk factors for deep vein thrombosis of lower extremity after thoracoscopic surgery for elderly lung cancer and establishment and validation of prediction model [J]. Journal of International Oncology, 2022, 49(9): 532-536. |
[7] | Chen Huangjing, Zhu Pengfei, Zhang Qing, Chen Guifang, Yang Chunlin, He Ying. Comparative study on the clinical value of contrast-enhanced ultrasound- and CT-guided percutaneous puncture biopsy in peripheral lung masses [J]. Journal of International Oncology, 2022, 49(8): 459-463. |
[8] | Cai Gangxiang, Li Jing, Xu Bin. Advances in neoadjuvant immunotherapy for lung cancer [J]. Journal of International Oncology, 2022, 49(6): 366-370. |
[9] | Zhang Jingxian, Yi Dan, Li Xiaojiang. Application of antibody-drug conjugates in the treatment of non-small cell lung cancer [J]. Journal of International Oncology, 2022, 49(5): 296-301. |
[10] | Gao Min, Feng Jing, Wang Li, Zhong Hai, Wen Yuting, Wan Bing, Zhang Xiuwei. Application of microbiota in the early diagnosis and adjunctive treatment of lung cancer [J]. Journal of International Oncology, 2022, 49(4): 247-251. |
[11] | Gao Shile, Lu Donghui, Liu Meiqin, Xu Xingjun, Ma Huan, Zhang Yu. Clinical efficacy and optimal dose of apatinib combined with chemotherapy in patients with advanced non-small cell lung cancer [J]. Journal of International Oncology, 2022, 49(3): 140-145. |
[12] | Xie Hongxia, Zuo Jinhui, Liao Dongying, Deng Renfen, Yao Yang, Jia Yingjie, Li Xiaojiang, Kong Fanming. Application of PD-L1 inhibitors in the treatment of non-small cell lung cancer [J]. Journal of International Oncology, 2022, 49(2): 111-115. |
[13] | Huang Huayu, Song Qibin, Gong Hongyun, Song Jia. Analysis on the incidence and risk factors of pneumonia in patients with lung cancer receiving thoracic radiotherapy and immunotherapy [J]. Journal of International Oncology, 2022, 49(12): 718-723. |
[14] | Zhang Hongjiao, Jiang Jie, Huang Wei. Research progress of functional imaging-assisted radiotherapy target delineation of lung cancer with atelectasis [J]. Journal of International Oncology, 2022, 49(1): 51-55. |
[15] | Hu Ge, Su Jie, Li Qiangwei, Xu Peng, Xu Xiuli, Qian Xiaotao. Value of CD4/CD8 ratio and total B lymphocytes before radiotherapy in predicting radiation pneumonitis in patients with esophageal cancer and lung cancer [J]. Journal of International Oncology, 2021, 48(9): 523-526. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||