Journal of International Oncology ›› 2024, Vol. 51 ›› Issue (8): 532-537.doi: 10.3760/cma.j.cn371439-20240304-00089
• Reviews • Previous Articles Next Articles
Peng Dan1,2, Lyu Lu1, Sun Pengfei2()
Received:
2024-03-04
Revised:
2024-05-20
Online:
2024-08-08
Published:
2024-09-24
Contact:
Sun Pengfei,Email:sunpengfeiby@163.com
Peng Dan, Lyu Lu, Sun Pengfei. Research progress of radiomics in cervical cancer[J]. Journal of International Oncology, 2024, 51(8): 532-537.
[1] | Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660. |
[2] |
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
pmid: 22257792 |
[3] |
Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.
pmid: 26579733 |
[4] |
Galic V, Herzog TJ, Lewin SN, et al. Prognostic significance of adenocarcinoma histology in women with cervical cancer[J]. Gynecol Oncol, 2012, 125(2): 287-291. DOI: 10.1016/j.ygyno.2012.01.012.
pmid: 22266551 |
[5] | Fujiwara K, Monk B, Devouassoux-Shisheboran M. Adenocarcinoma of the uterine cervix: why is it different?[J]. Curr Oncol Rep, 2014, 16(12): 416. DOI: 10.1007/s11912-014-0416-y. |
[6] | Wang W, Jiao Y, Zhang L, et al. Multiparametric MRI-based radiomics analysis: differentiation of subtypes of cervical cancer in the early stage[J]. Acta Radiol, 2022, 63(6): 847-856. DOI: 10.1177/02841851211014188. |
[7] | Shen WC, Chen SW, Liang JA, et al. [18]fluorodeoxyglucose positron emission tomography for the textural features of cervical cancer associated with lymph node metastasis and histological type[J]. Eur J Nucl Med Mol Imaging, 2017, 44(10): 1721-1731. DOI: 10.1007/s00259-017-3697-1. |
[8] | Matsuo K, Mandelbaum RS, Machida H, et al. Association of tumor differentiation grade and survival of women with squamous cell carcinoma of the uterine cervix[J]. J Gynecol Oncol, 2018, 29(6): e91. DOI: 10.3802/jgo.2018.29.e91. |
[9] |
Liu Y, Zhang YW, Cheng RF, et al. Radiomics analysis of apparent diffusion coefficient in cervical cancer: a preliminary study on histological grade evaluation[J]. J Magn Reson Imaging, 2019, 49(1): 280-290. DOI: 10.1002/jmri.26192.
pmid: 29761595 |
[10] |
Wang S, Jiang T, Hu X, et al. Can the combination of DWI and T2WI radiomics improve the diagnostic efficiency of cervical squamous cell carcinoma?[J]. Magn Reson Imaging, 2022, 92: 197-202. DOI: 10.1016/j.mri.2022.07.005.
pmid: 35842193 |
[11] |
Mu W, Chen Z, Liang Y, et al. Staging of cervical cancer based on tumor heterogeneity characterized by texture features on (18)F-FDG PET images[J]. Phys Med Biol, 2015, 60(13): 5123-5139. DOI: 10.1088/0031-9155/60/13/5123.
pmid: 26083460 |
[12] | Wang M, Perucho JAU, Tse KY, et al. MRI texture features differen-tiate clinicopathological characteristics of cervical carcinoma[J]. Eur Radiol, 2020, 30(10): 5384-5391. DOI: 10.1007/s00330-020-06913-7. |
[13] | Wang M, Perucho JAU, Vardhanabhuti V, et al. Radiomic features of T2-weighted imaging and diffusion kurtosis imaging in differentia-ting clinicopathological characteristics of cervical carcinoma[J]. Acad Radiol, 2022, 29(8): 1133-1140. DOI: 10.1016/j.acra.2021.08.018. |
[14] | Du W, Wang Y, Li DD, et al. Preoperative prediction of lymphovascular space invasion in cervical cancer with radiomics-based nomogram[J]. Front Oncol, 2021, 11: 637794. DOI: 10.3389/fonc.2021.637794. |
[15] | Huang G, Cui YQ, Wang P, et al. Multi-parametric magnetic resonance imaging-based radiomics analysis of cervical cancer for preoperative prediction of lymphovascular space invasion[J]. Front Oncol, 2021, 11: 663370. DOI: 10.3389/fonc.2021.663370. |
[16] | Wu Y, Wang S, Chen Y, et al. A multicenter study on preoperative assessment of lymphovascular space invasion in early‐stage cervical cancer based on multimodal MR radiomics[J]. J Magn Reson Imaging, 2023, 58(5): 1638-1648. DOI: 10.1002/jmri.28676.Epub 2023 Mar 16. |
[17] | Li X, Xu C, Yu Y, et al. Prediction of lymphovascular space invasion using a combination of tenascin-C, cox-2, and PET/CT radiomics in patients with early-stage cervical squamous cell carcinoma[J]. BMC Cancer, 2021, 21(1): 866. DOI: 10.1186/s12885-021-08596-9. |
[18] | Cui L, Yu T, Kan Y, et al. Multi-parametric MRI-based peritumoral radiomics on prediction of lymph-vascular space invasion in early-stage cervical cancer[J]. Diagn Interv Radiol, 2022, 28(4): 312-321. DOI: 10.5152/dir.2022.20657. |
[19] | Hua W, Xiao T, Jiang X, et al. Lymph-vascular space invasion prediction in cervical cancer: exploring radiomics and deep learning multilevel features of tumor and peritumor tissue on multiparametric MRI[J]. Biomed Signal Process Control, 2020, 58: 101869. DOI: 10.1016/j.bspc.2020.101869. |
[20] | 袁晨阳, 周菊英, 杜霄, 等. 宫颈癌2018与2009 FIGO分期的比较及预后因素分析[J]. 国际肿瘤学杂志, 2022, 49(3): 151-163. DOI: 10.3760/cma.j.cn371439-20211015-00026. |
[21] | Liu Y, Fan H, Dong D, et al. Computed tomography-based radiomic model at node level for the prediction of normal-sized lymph node metastasis in cervical cancer[J]. Transl Oncol, 2021, 14(8): 101113. DOI: 10.1016/j.tranon.2021.101113. |
[22] | Song J, Hu Q, Ma Z, et al. Feasibility of T2WI-MRI-based radiomics nomogram for predicting normal-sized pelvic lymph node metastasis in cervical cancer patients[J]. Eur Radiol, 2021, 31(9): 6938-6948. DOI: 10.1007/s00330-021-07735-x. |
[23] |
Wu Q, Wang S, Chen X, et al. Radiomics analysis of magnetic resonance imaging improves diagnostic performance of lymph node metastasis in patients with cervical cancer[J]. Radiother Oncol, 2019, 138: 141-148. DOI: 10.1016/j.radonc.2019.04.035.
pmid: 31252296 |
[24] | Shi J, Dong Y, Jiang W, et al. MRI-based peritumoral radiomics analysis for preoperative prediction of lymph node metastasis in early-stage cervical cancer: a multi-center study[J]. Magn Reson Imaging, 2022, 88: 1-8. DOI: 10.1016/j.mri.2021.12.008. |
[25] | Song M, Lin J, Song FZ, et al. The value of MR-based radiomics in identifying residual disease in patients with carcinoma in situ after cervical conization[J]. Sci Rep, 2020, 10(1): 19890. DOI: 10.1038/s41598-020-76853-1. |
[26] |
Fang J, Zhang B, Wang S, et al. Association of MRI-derived radiomic biomarker with disease-free survival in patients with early-stage cervical cancer[J]. Theranostics, 2020, 10(5): 2284-2292. DOI: 10.7150/thno.37429.
pmid: 32089742 |
[27] | Zhou Y, Gu H, Zhang X, et al. Multiparametric magnetic resonance imaging-derived radiomics for the prediction of disease-free survival in early-stage squamous cervical cancer[J]. Eur Radiol, 2022, 32(4): 2540-2551. DOI: 10.1007/s00330-021-08326-6. |
[28] | Liu S, Li R, Liu Q, et al. Radiomics model of 18F-FDG PET/CT imaging for predicting disease-free survival of early-stage uterine cervical squamous cancer[J]. Cancer Biomark, 2022, 33(2): 249-259. DOI: 10.3233/CBM-210201. |
[29] | Lucia F, Visvikis D, Desseroit MC, et al. Prediction of outcome using pretreatment 18F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy[J]. Eur J Nucl Med Mol Imaging, 2018, 45(5): 768-786. DOI: 10.1007/s00259-017-3898-7. |
[30] | Lucia F, Visvikis D, Vallières M, et al. External validation of a combined PET and MRI radiomics model for prediction of recurrence in cervical cancer patients treated with chemoradiotherapy[J]. Eur J Nucl Med Mol Imaging, 2019, 46(4): 864-877. DOI: 10.1007/s00259-018-4231-9. |
[31] | Mu W, Liang Y, Hall LO, et al. 18F-FDG PET/CT habitat radiomics predicts outcome of patients with cervical cancer treated with chemoradiotherapy[J]. Radiol Artif Intell, 2020, 2(6): e190218. DOI: 10.1148/ryai.2020190218. |
[32] | Ren K, Shen L, Qiu J, et al. Treatment planning computed tomography radiomics for predicting treatment outcomes and haematological toxicities in locally advanced cervical cancer treated with radiotherapy: a retrospective cohort study[J]. BJOG, 2023, 130(2): 222-230. DOI: 10.1111/1471-0528.17285. |
[33] | Li H, Zhu M, Jian L, et al. Radiomic score as a potential imaging biomarker for predicting survival in patients with cervical cancer[J]. Front Oncol, 2021, 11: 706043. DOI: 10.3389/fonc.2021.706043. |
[34] | Zhang X, Zhang Q, Guo J, et al. Added-value of texture analysis of ADC in predicting the survival of patients with 2018 FIGO stage ⅢCr cervical cancer treated by concurrent chemoradiotherapy[J]. Eur J Radiol, 2022, 150: 110272. DOI: 10.1016/j.ejrad.2022.110272. |
[35] | Liu B, Sun Z, Xu Z, et al. Predicting disease-free survival with multiparametric MRI-derived radiomic signature in cervical cancer patients underwent CCRT[J]. Front Oncol, 2021, 11: 812993. DOI: 10.3389/fonc.2021.812993. |
[36] | Park SH, Hahm MH, Bae BK, et al. Magnetic resonance imaging features of tumor and lymph node to predict clinical outcome in node-positive cervical cancer: a retrospective analysis[J]. Radiat Oncol, 2020, 15(1): 86. DOI: 10.1186/s13014-020-01502-w. |
[37] | Kim KE, Kim CK. Magnetic resonance imaging-based texture analysis for the prediction of postoperative clinical outcome in uterine cervical cancer[J]. Abdom Radiol (NY), 2022, 47(1): 352-361. DOI: 10.1007/s00261-021-03288-1. |
[38] |
Wormald BW, Doran SJ, Ind TE, et al. Radiomic features of cervical cancer on T2-and diffusion-weighted MRI: prognostic value in low-volume tumors suitable for trachelectomy[J]. Gynecol Oncol, 2020, 156(1): 107-114. DOI: 10.1016/j.ygyno.2019.10.010.
pmid: 31685232 |
[39] | Yusufaly TI, Zou J, Nelson TJ, et al. Improved prognosis of treatment failure in cervical cancer with nontumor PET/CT radiomics[J]. J Nucl Med, 2022, 63(7): 1087-1093. DOI: 10.2967/jnumed.121.262618. |
[40] | Zhang X, Zhang Q, Xie L, et al. The value of whole-tumor texture analysis of ADC in predicting the early recurrence of locally advanced cervical squamous cell cancer treated with concurrent chemoradiotherapy[J]. Front Oncol, 2022, 12: 852308. DOI: 10.3389/fonc.2022.852308. |
[41] | Zhang Y, Liu L, Zhang K, et al. Nomograms combining clinical and imaging parameters to predict recurrence and disease-free survival after concurrent chemoradiotherapy in patients with locally advanced cervical cancer[J]. Acad Radiol, 2023, 30(3): 499-508. DOI: 10.1016/j.acra.2022.08.002. |
[1] | Wang Yan. Differential diagnostic value of transvaginal ultrasound elastography combined with serum miR-144-3p,CMTM6 for cervical precancerous lesions and cervical cancer [J]. Journal of International Oncology, 2024, 51(8): 504-509. |
[2] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[3] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
[4] | Zhang Lu, Jiang Hua, Lin Zhou, Ma Chenying, Xu Xiaoting, Wang Lili, Zhou Juying. Analysis of curative effect and prognosis of immune checkpoint inhibitor in the treatment of recurrent and metastatic cervical cancer [J]. Journal of International Oncology, 2023, 50(8): 475-483. |
[5] | Lyu Lu, Sun Pengfei. Gut flora and cervical cancer [J]. Journal of International Oncology, 2023, 50(6): 373-376. |
[6] | Cao Xiaohui, Yu Hong, Li Wanhu. Application of CT-based radiomics analysis in predicting and identifying of treatment-associated pneumonitis [J]. Journal of International Oncology, 2023, 50(2): 107-111. |
[7] | Ma Xueyan, Lu Lili, Sun Pengfei. Advances in the immune microenvironment in cervical cancer [J]. Journal of International Oncology, 2023, 50(1): 47-50. |
[8] | Zhang Lu, Zhou Juying, Ma Chenying, Lin Zhou. Advances in immunotherapy for recurrent and metastatic cervical cancer [J]. Journal of International Oncology, 2022, 49(9): 517-520. |
[9] | Shi Yingxia, Hu Lijun, Yu Jingping. Application of immune checkpoint inhibitors in the treatment of recurrent or metastatic cervical cancer [J]. Journal of International Oncology, 2022, 49(9): 568-571. |
[10] | Wu Jiayu, Liu Jiacheng. Research progress of radiomics toward lung adenocarcinoma manifesting as solitary ground glass nodule [J]. Journal of International Oncology, 2022, 49(8): 449-452. |
[11] | Peng Chen, Xie Yintong, Zhang Xin, Xie Peng. Research progress of maintenance therapy for cervical cancer [J]. Journal of International Oncology, 2022, 49(7): 430-435. |
[12] | Yuan Chenyang, Zhou Juying. Research progress on prognostic factors of cervical cancer [J]. Journal of International Oncology, 2022, 49(5): 307-313. |
[13] | Wang Yue, Wu Qiong, Xu Yuan, Gong Wei, Xu Xiaoting. Screening and treatment progression of elderly cervical cancer [J]. Journal of International Oncology, 2022, 49(12): 754-758. |
[14] | Ma Xiuzhen, Lu Yan, Zhao Bingbing, Qiu Hongcong, Xu Xun, Wei Min. Effects of total flavonoids from Baeckea frutescens on the migration, invasion and apoptosis of cervical cancer SiHa cells [J]. Journal of International Oncology, 2021, 48(4): 206-211. |
[15] | Yu Mingyue, Chen Zhengzheng, Zhao Xuxu, Ren Pingping, Zhang Ying, Ge Li, Zhu Meiling, Zhao Weidong. Factors related to postoperative adjuvant therapy of locally advanced cervical cancer and building of a nomogram prediction model [J]. Journal of International Oncology, 2021, 48(1): 35-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||