Journal of International Oncology ›› 2018, Vol. 45 ›› Issue (6): 371-374.doi: 10.3760/cma.j.issn.1673-422X.2018.06.013
Previous Articles Next Articles
Zhou Shuaiyang, Gong Weijuan, Xiao Weiming
Received:
2018-03-05
Online:
2018-06-08
Published:
2018-07-31
Contact:
Xiao Weiming
E-mail:wmxiao@yzu.edu.cn
Supported by:
Natural Science Foundation of Jiangsu Province of China (BK20161339); Natural Science Foundation of Yangzhou of China (YZ2016128)
Zhou Shuaiyang, Gong Weijuan, Xiao Weiming. Mechanism of angiopoietinlike protein 4 in digestive system neoplasms[J]. Journal of International Oncology, 2018, 45(6): 371-374.
[1] Ye Q, Tian GP, Cheng HP, et al. MicroRNA-134 promotes the development of atherosclerosis via the ANGPTL4/LPL pathway in apolipoprotein E knockout mice[J]. J Atheroscler Thromb, 2018, 25(3): 244-253. DOI: 10.5551/jat.40212. [2] Chen TC, Benjamin DI, Kuo T, et al. The glucocorticoidAngptl4ceramide axis induces insulin resistance through PP2A and PKCζ[J]. Sci Signal, 2017, 10(489), pii: eaai7905. DOI: 10.1126/scisignal.aai7905. [3] Okamoto H, Cavino K, Na E, et al. Angptl4 does not control hyperglucagonemia or αcell hyperplasia following glucagon receptor inhibition[J]. Proc Natl Acad Sci U S A, 2017, 114(10): 2747-2752. DOI: 10.1073/pnas.1620989114. [4] Carbone C, Piro G, Merz V, et al. Angiopoietinlike proteins in angiogenesis, inflammation and cancer[J]. Int J Mol Sci, 2018, 19(2), pii: E431. DOI: 10.3390/ijms19020431. [5] Guo L, Li SY, Ji FY, et al. Role of Angptl4 in vascular permeability and inflammation[J]. Inflamm Res, 2014, 63(1): 13-22. DOI: 10.1007/s00011-013-0678-0. [6] Izraely S, BenMenachem S, SagiAssif O, et al. ANGPTL4 promotes the progression of cutaneous melanoma to brain metastasis[J]. Oncotarget, 2017, 8(44): 75778-75796. DOI: 10.18632/oncotarget.19018. [7] Masuko K. Angiopoietinlike 4: a molecular link between insulin resistance and rheumatoid arthritis[J]. J Orthop Res, 2017, 35(5):939-943.DOI: 10.1002/jor.23507. [8] La Paglia L, Listì A, Caruso S, et al. Potential role of ANGPTL4 in the cross talk between metabolism and cancer through PPAR signaling pathway[J]. PPAR Res, 2017, 8187235. DOI: 10.1155/2017/8187235. [9] Yi J, Pan BZ, Xiong L, et al. Clinical significance of angiopoietinlike protein 4 expression in tissue and serum of esophageal squamous cell carcinoma patients[J]. Med Oncol, 2013, 30(3): 680. DOI: 10.1007/s12032-013-0680-y. [10] Huang Z, Xie J, Lin S, et al. The downregulation of ANGPTL4 inhibits the migration and proliferation of tongue squamous cell carcinoma[J]. Arch Oral Biol, 2016, 71: 144-149. DOI: 10.1016/j.archoralbio.2016.07.011. [11] OkochiTakada E, Hattori N, Tsukamoto T, et al. ANGPTL4 is a secreted tumor suppressor that inhibits angiogenesis[J]. Oncogene, 2014, 33(17): 2273-2278. DOI: 10.1038/onc.2013.174. [12] Feng W, Xue T, Huang S, et al. HIF-1α promotes the migration and invasion of hepatocellular carcinoma cells via the IL-8NF-κB axis[J]. Cell Mol Biol Lett, 2018, 23: 26. DOI: 10.1186/s11658-018-0077-1. [13] Wang X, Luo G, Zhang K, et al. Hypoxic tumorderived exosomal miR301a mediates M2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer metastasis[J]. Cancer Res, 2018, In press. DOI: 10.1158/0008-5472.CAN-17-3841. [14] Kim SH, Park YY, Kim SW, et al. ANGPTL4 induction by prostaglandin E2 under hypoxic conditions promotes colorectal cancer progression[J]. Cancer Res, 2011, 71(22): 7010-7020. DOI: 10.1158/0008-5472.CAN-11-1262. [15] Khong TL, Thairu N, Larsen H, et al. Identification of the angiogenic gene signature induced by EGF and hypoxia in colorectal cancer[J]. BMC Cancer, 2013, 13(1): 518. DOI: 10.1186/1471-2407-13-518. [16] Li X, Chen T, Shi Q, et al. Angiopoietinlike 4 enhances metastasis and inhibits apoptosis via inducing bone morphogenetic protein 7 in colorectal cancer cells[J]. Biochem Biophys Res Commun, 2015, 467(1): 128-134. DOI: 10.1016/j.bbrc.2015.09.104. [17] Alex S, Lange K, Amolo T, et al. Shortchain fatty acids stimulate angiopoietinlike 4 synthesis in human colon adenocarcinoma cells by activating peroxisome proliferatoractivated receptor γ[J]. Mol Cell Biol, 2013, 33(7): 1303-1316. DOI: 10.1128/MCB.0085812. [18] Meng Q, Qin Y, Deshpande M, et al. Hypoxiainducible factordependent expression of angiopoietinlike 4 by conjunctival epithelial cells promotes the angiogenic phenotype of pterygia[J]. Invest Ophthalmol Vis Sci, 2017, 58(11): 4514-4523. DOI: 10.1167/iovs.17-21974. [19] 肖俊娟, 李岩, 梁婧. 乏氧微环境与肿瘤免疫应答[J]. 国际肿瘤学杂志, 2017, 44(1): 31-33. DOI: 10.3760/cma.j.issn.1673-422X.2017.01.008. [20] Gomez Perdiguero E, LiabotisFontugne A, Durand M, et al. ANGPTL4αvβ3 interaction counteracts hypoxiainduced vascular permeability by modulating Src signaling downstream of vascular endothelial growth factor receptor 2[J]. J Pathol, 2016, 240(4): 461-471. DOI: 10.1002/path.4805. [21] Hu K, BabapoorFarrokhran S, Rodrigues M, et al. Hypoxiainducible factor 1 upregulation of both VEGF and ANGPTL4 is required to promote the angiogenic phenotype in uveal melanoma[J]. Oncotarget, 2016, 7(7): 7816-7828. DOI: 10.18632/oncotarget.6868. [22] Wan J, Wen D, Dong L, et al. Establishment of monoclonal HCC cell lines with organ sitespecific tropisms[J]. BMC Cancer, 2015, 15: 678. DOI: 10.1186/s12885-015-1692-0. [23] 王宇婷, 陈陶阳, 朱健, 等. 肝癌高发区人群新生儿乙型肝炎疫苗接种对肝癌的预防效果[J]. 中华预防医学杂志, 2018, 52(4): 402408. DOI: 10.3760/cma.j.issn.02539624.2018.04.013. [24] EIShal AS, Zidan HE, Rashad NM, et al. Angiopoietinlike protein 3 and 4 expression 4 and their serum levels in hepatocellular carcinoma[J]. Cytokine, 2017, 96: 75-86. DOI: 10.1016/j.cyto.2017.03.006. [25] Ng KT, Xu A, Cheng Q, et al. Clinical relevance and therapeutic potential of angiopoietinlike protein 4 in hepatocellular carcinoma[J]. Mol Cancer, 2014, 13: 196. DOI: 10.1186/1476-4598-13-196. [26] Zhang H, Wei S, Ning S, et al. Evaluation of TGFβ, XPO4, elF5A2 and ANGPTL4 as biomarkers in HCC[J]. Exp Ther Med, 2013, 5(1): 119-127. DOI: 10.3892/etm.2012.750. [27] Baba K, Kitajima Y, Miyake S, et al. Hypoxiainduced ANGPTL4 sustains tumour growth and anoikis resistance through different mechanisms in scirrhous gastric cancer cell lines[J]. Sci Rep, 2017, 7(1): 11127. DOI: 10.1038/s41598-017-11769-x. [28] Kubo H, Kitajima Y, Kai K, et al. Regulation and clinical significance of the hypoxiainduced expression of ANGPTL4 in gastric cancer[J]. Oncol Lett, 2016, 11(2): 1026-1034. DOI: 10.3892/ol.2015.4011. [29] Karakashev SV, Reginato MJ. Progress toward overcoming hypoxiainduced resistance to solid tumor therapy[J]. Cancer Manag Res, 2015, 7: 253264. DOI: 10.2147/CMAR.S58285. [30] Tanaka T, ImamuraT, Yoneda M, et al. Enhancement of active MMP release and invasive activity of lymph node metastatic tongue cancer cells by elevated signaling via the TNF-α TNFR1NF-κB pathway and a possible involvement of angiopoietinlike 4 in lung metastasis[J]. Int J Oncol, 2016, 49(4): 1377-1384. DOI: 10.3892/ijo.2016.3653. [31] Li B, Qian M, Cao H, et al. TGFβ2induced ANGPTL4 expression promotes tumor progression and osteoclast differentiation in giant cell tumor of bone[J]. Oncotarget, 2017, 8(33): 54966-54977. DOI: 10.18632/oncotarget.18629. [32] Hou M, Cui J, Liu J, et al. Retraction: angiopoietinlike 4 confers resistance to hypoxia/serum deprivationinduced apoptosis through PI3K/Akt and ERK1/2 signaling pathways in mesenchymal stem cells[J]. PLoS One, 2018, 13(3): e0194448. DOI: 10.1371/journal.pone.0194448. [33] Shen CJ, Chan SH, Lee CT, et al. Oleic acidinduced ANGPTL4 enhances head and neck squamous cell carcinoma anoikis resistance and metastasis via upregulation of fibronectin[J]. Cancer Lett, 2017, 386: 110-122. DOI: 10.1016/j.canlet.2016.11.012. [34] Stone L. Bladder cancer: context is key: dual roles of ANGPTL4[J]. Nat Rev Urol, 2017, 14(12): 702. DOI: 10.1038/nrurol.2017.191. [35] Hsieh HY, Jou YC, Tung CL, et al. Epigenetic silencing of the dualrole signal mediator, ANGPTL4 in tumor tissues and its overexpression in the urothelial carcinoma microenvironment[J]. Oncogene, 2018, 37(5): 673-686. DOI: 10.1038/onc.2017.375. |
[1] | Wang Liwei, Liang Hongsheng, Du Songlin, Chen Zhihao, Wang Qing, Gao Aili. Research progress of avermectins in anti-tumor [J]. Journal of International Oncology, 2022, 49(6): 353-356. |
[2] | Pang Jingdan, Du Yingying, Da Jie. Adverse reactions and treatment measures of advanced solid tumors treated with antibody-drug conjugates [J]. Journal of International Oncology, 2022, 49(4): 220-224. |
[3] | Zeng Yan, Luo Pan, Wang Ziqi, Wu Weili. Mechanism of drug induced ferroptosis in the treatment of head and neck tumors [J]. Journal of International Oncology, 2022, 49(3): 173-176. |
[4] | Xu Kai, Wen Gang, Li Rui, Tian Yuan. Research progress on the prognostic value of the ratio of lymphocytes to C-reactive protein in digestive system neoplasms [J]. Journal of International Oncology, 2022, 49(10): 627-629. |
[5] | Yang Chi, Luo Changjiang. Research progress on the background of inflammation, immunity and cholesterol metabolism in colorectal cancer [J]. Journal of International Oncology, 2022, 49(10): 630-634. |
[6] | Guo Shihao, Ren Yeqing, Guo Geng. Molecular mechanism of vasculogenic mimicry in brain glioma [J]. Journal of International Oncology, 2021, 48(6): 362-365. |
[7] | Ju Xinyue, Hu Chunmei, Zhao Yue, Tang Yan. CDX2 and gastrointestinal neoplasms [J]. Journal of International Oncology, 2021, 48(6): 374-376. |
[8] | Wei Yongjian, Hu Jinjing, Li Xun. Relationship between CDCA8 and tumor progression as well as that between CDCA8 and stemness maintenance of stem cells [J]. Journal of International Oncology, 2021, 48(4): 216-219. |
[9] | Liu Peipei, Yang Mengxue, Yan Xuebing. Research advances of m6A methylation modification in digestive system neoplasms [J]. Journal of International Oncology, 2021, 48(11): 688-692. |
[10] | Yan Bingfang, Meng Wei, Bai Xuelian. Progress of Legumain in malignant tumors [J]. Journal of International Oncology, 2020, 47(9): 546-549. |
[11] | Ma Yingji, Sun Libin, Qiu Wensheng. Mechanism of long non-coding RNA GHET1 in tumors of the digestive system [J]. Journal of International Oncology, 2020, 47(5): 304-307. |
[12] | Su Hao, Liu Wenjie, Bao Mandula, Luo Shou, Wang Xuewei, Zhao Chuanduo, Liu Qian, Wang Xishan, Zhou Zhixiang, Zhou Haitao. Molecular mechanisms of cetuximab resistance in metastatic colorectal cancer [J]. Journal of International Oncology, 2020, 47(5): 308-311. |
[13] | Zhu Zemin, Xie Zhiqin, Sun Yongkang, Tang Caixi. MicroRNA-223 and digestive system tumors [J]. Journal of International Oncology, 2020, 47(2): 112-114. |
[14] | Chai Yue, Dong Mei. Prognostic role and mechanisms of abnormal coagulation system in lymphoma [J]. Journal of International Oncology, 2020, 47(10): 637-640. |
[15] | Zhou Huiping, Li Yuhua, Wang Yuhui, Su Yilong, Yang Yingying, Xu Xiaotian, Duan Xiaoqun. Preventive and therapeutic effects of common plant drugs on colon cancer and its mechanism [J]. Journal of International Oncology, 2020, 47(1): 51-55. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||