[1] Siziopikou KP. Ductal carcinoma in situ of the breast: current concepts and future directions[J]. Arch Pathol Lab Med, 2013, 137(4): 462-466. DOI: 10.5858/arpa.2012-0078-RA.
[2] Cowell CF, Weigelt B, Sakr RA, et al. Progression from ductal carcinoma in situ to invasive breast cancer: revisited[J]. Mol Oncol, 2013, 7(5): 859-869. DOI: 10.1016/j.molonc.2013.07.005.
[3] Pandey PR, Saidou J, Watabe K. Role of myoepithelial cells in breast tumor progression[J]. Front Biosci (Landmark Ed), 2010, 15: 226-236. DOI: 10.2741/3617.
[4] Bombonati A, Sgroi DC. The molecular pathology of breast cancer progression[J]. J Pathol, 2011, 223(2): 307-317. DOI: 10.1002/path.2808.
[5] Elias EV, de Castro NP, Pineda PH, et al. Epithelial cells captured from ductal carcinoma in situ reveal a gene expression signature associated with progression to invasive breast cancer[J]. Oncotarget, 2016, 7(46): 75672-75684. DOI: 10.18632/oncotarget.12352.
[6] Rakha EA, Miligy IM, Gorringe KL, et al. Invasion in breast lesions: the role of the epithelialstroma barrier[J]. Histopathology, 2018, 72(7): 1075-1083. DOI: 10.1111/his.13446.
[7] Ma XJ, Dahiya S, Richardson E, et al. Gene expression profiling of the tumor microenvironment during breast cancer progression[J]. Breast Cancer Res, 2009, 11(1): R7. DOI: 10.1186/bcr2222.
[8] Witkiewicz AK, Cox DW, Rivadeneira D, et al. The retinoblastoma tumor suppressor pathway modulates the invasiveness of ErbB2positive breast cancer[J]. Oncogene, 2014, 33(30): 3980-3991. DOI: 10.1038/onc.2013.367.
[9] Malanchi I, SantamariaMartinez A, Susanto E, et al. Interactions between cancer stem cells and their niche govern metastatic colonization[J]. Nature, 2011, 481(7379): 85-89. DOI: 10.1038/nature 10694.
[10] Espina V, Liotta LA. What is the malignant nature of human ductal carcinoma in situ[J]. Nat Rev Cancer, 2011, 11(1): 68-75. DOI: 10.1038/nrc2950.
[11] SensAbuázar C, Napolitano E Ferreira E, Osório CA, et al. Downregulation of ANAPC13 and CLTCL1: early events in the progression of preinvasive ductal carcinoma of the breast[J]. Transl Oncol, 2012, 5(2): 113-123.
[12] Hsu TH, Jiang SY, Chan WL, et al. Involvement of RARRES3 in the regulation of Wnt proteins acylation and signaling activities in human breast cancer cells[J]. Cell Death Differ, 2014, 22(5): 801-814. DOI: 10.1038/cdd.2014.175.
[13] Benjamin DI, Louie SM, Mulvihill MM, et al. Inositol phosphate recycling regulates glycolytic and lipid metabolism that drives cancer aggressiveness[J]. ACS Chem Biol, 2014, 9(6): 1340-1350. DOI: 10.1021/cb5001907.
[14] Wang L, Lyu S, Wang S, et al. Loss of FAT1 during the progression from DCIS to IDC and predict poor clinical outcome in breast cancer[J]. Exp Mol Pathol, 2016, 100(1): 177-183. DOI: 10.1016/j.yexmp.2015.12.012.
[15] Perez AA, Balabram D, Rocha RM, et al. Coexpression of p16, Ki67 and COX2 is associated with basal phenotype in highgrade ductal carcinoma in situ of the breast[J]. J Histochem Cytochem, 2015, 63(6): 408-416. DOI: 10.1369/0022155415576540.
[16] Sakr RA, Weigelt B, Chandarlapaty S, et al. PI3K pathway activation in HighGrade ductal carcinoma in SituImplications for progression to invasive breast carcinoma[J]. Clin Cancer Res, 2014, 20(9): 2326-2337. DOI: 10.1158/10780432.CCR132267.
[17] Shi A, Dong J, Hilsenbeck S, et al. The status of STAT3 and STAT5 in human breast atypical ductal hyperplasia[J]. PLoS One, 2015, 10(7): e0132214. DOI: 10.1371/journal.pone.0132214.
[18] Park SY, Kwon HJ, Lee HE, et al. Promoter CpG island hypermethylation during breast cancer progression[J]. Virchows Arch, 2011, 458(1): 73-84. DOI: 10.1007/s00428-010-1013-6.
[19] Moelans CB, VerschuurMaes AH, van Diest PJ. Frequent promoter hypermethylation of BRCA2, CDH13, MSH6, PAX5, PAX6 and WT1 in ductal carcinoma in situ and invasive breast cancer[J]. J Pathol, 2011, 225(2): 222-231. DOI: 10.1002/path.2930.
[20] Hannafon BN, Ding WQ. miRNAs as biomarkers for predicting the progression of ductal carcinoma in situ[J]. AM J Pathol, 2018, 188(3): 542-549. DOI: 10.1016/j.ajpath.2017.11.003.
[21] Li S, Meng H, Zhou F, et al. MicroRNA132 is frequently downregulated in ductal carcinoma in situ (DCIS) of breast and acts as a tumor suppressor by inhibiting cell proliferation[J]. Pathol Res Pract, 2013, 209(3): 179-183. DOI: 10.1016/j.prp.2012.12.002.
[22] Farazi TA, Horlings HM, Ten Hoeve JJ, et al. MicroRNA sequence and expression analysis in breast tumors by deep sequencing[J]. Cancer Res, 2011, 71(13): 4443-4453. DOI: 10.1158/0008-5472.CAN-11-0608.
[23] Galasso M, Costantino G, Pasquali L, et al. Profiling of the predicted circular RNAs in ductal in situ and invasive breast cancer: a pilot study[J]. Int J Genomics, 2016, 2016: 4503840. DOI: 10.1155/2016/4503840. |