Journal of International Oncology ›› 2025, Vol. 52 ›› Issue (8): 523-527.doi: 10.3760/cma.j.cn371439-20250312-00088
• Review • Previous Articles Next Articles
Wu Xuehui, Li Song, Liu Lian()
Received:
2025-03-12
Revised:
2025-04-15
Online:
2025-08-08
Published:
2025-09-15
Contact:
Liu Lian
E-mail:lianliu@sdu.edu.cn
Supported by:
Wu Xuehui, Li Song, Liu Lian. Clinical applications of TCR sequencing in cancer immunotherapy[J]. Journal of International Oncology, 2025, 52(8): 523-527.
[1] | Abbott M, Ustoyev Y. Cancer and the immune system: the history and background of immunotherapy[J]. Semin Oncol Nurs, 2019, 35(5): 150923. DOI: 10.1016/j.soncn.2019.08.002. |
[2] | Shah K, Al-Haidari A, Sun J, et al. T cell receptor (TCR) signaling in health and disease[J]. Signal Transduct Target Ther, 2021, 6(1): 412. DOI: 10.1038/s41392-021-00823-w. |
[3] | Mahe E, Pugh T, Kamel-Reid S. T cell clonality assessment: past, present and future[J]. J Clin Pathol, 2018, 71(3): 195-200. DOI: 10.1136/jclinpath-2017-204761. |
[4] | Frank ML, Lu K, Erdogan C, et al. T-cell receptor repertoire sequencing in the era of cancer immunotherapy[J]. Clin Cancer Res, 2023, 29(6): 994-1008. DOI: 10.1158/1078-0432.CCR-22-2469. |
[5] | Khunger A, Rytlewski JA, Fields P, et al. The impact of CTLA-4 blockade and interferon-α on clonality of T-cell repertoire in the tumor microenvironment and peripheral blood of metastatic melanoma patients[J]. Oncoimmunology, 2019, 8(11): e1652538. DOI: 10.1080/2162402X.2019.1652538. |
[6] | Joshi K, Milighetti M, Chain BM. Application of T cell receptor (TCR) repertoire analysis for the advancement of cancer immunotherapy[J]. Curr Opin Immunol, 2022, 74: 1-8. DOI: 10.1016/j.coi.2021.07.006. |
[7] | Pan M, Li B. T cell receptor convergence is an indicator of antigen-specific T cell response in cancer immunotherapies[J]. Elife, 2022, 11: e81952. DOI: 10.7554/eLife.81952. |
[8] | Zhang L, Cham J, Paciorek A, et al. 3D: diversity, dynamics, differential testing—a proposed pipeline for analysis of next-generation sequencing T cell repertoire data[J]. BMC Bioinformatics, 2017, 18(1): 129. DOI: 10.1186/s12859-017-1544-9. |
[9] | Dong N, Moreno-Manuel A, Calabuig-Fariñas S, et al. Characterization of circulating T cell receptor repertoire provides information about clinical outcome after PD-1 blockade in advanced non-small cell lung cancer patients[J]. Cancers (Basel), 2021, 13(12): 2950. DOI: 10.3390/cancers13122950. |
[10] | Chen C, Liu SYM, Chen Y, et al. Predictive value of TCR Vβ-Jβ profile for adjuvant gefitinib in EGFR mutant NSCLC from ADJUVANT-CTONG 1104 trial[J]. JCI Insight, 2022, 7(1): e152631. DOI: 10.1172/jci.insight.152631. |
[11] | Cristescu R, Lee J, Nebozhyn M, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes[J]. Nat Med, 2015, 21(5): 449-456. DOI: 10.1038/nm.3850. |
[12] | 刘玉兰, 井海燕, 孙静, 等. 胃癌免疫治疗疗效预测及预后标志物的研究进展[J]. 国际肿瘤学杂志, 2024, 51(3): 175-180. DOI: 10.3760/cma.j.cn371439-20231109-00028. |
[13] | Ji S, Li J, Chang L, et al. Peripheral blood T-cell receptor repertoire as a predictor of clinical outcomes in gastrointestinal cancer patients treated with PD-1 inhibitor[J]. Clin Transl Oncol, 2021, 23(8): 1646-1656. DOI: 10.1007/s12094-021-02562-4. |
[14] | Wang X, Muzaffar J, Kirtane K, et al. T cell repertoire in peripheral blood as a potential biomarker for predicting response to concurrent cetuximab and nivolumab in head and neck squamous cell carcinoma[J]. J Immunother Cancer, 2022, 10(6): e004512. DOI: 10.1136/jitc-2022-004512. |
[15] | Zhao L, Ren Y, Zhang G, et al. Single-arm study of camrelizumab plus apatinib for patients with advanced mucosal melanoma[J]. J Immunother Cancer, 2024, 12(6): e008611. DOI: 10.1136/jitc-2023-008611. |
[16] | Han J, Duan J, Bai H, et al. TCR repertoire diversity of peripheral PD-1+CD8+T cells predicts clinical outcomes after immunotherapy in patients with non-small cell lung cancer[J]. Cancer Immunol Res, 2020, 8(1): 146-154. DOI: 10.1158/2326-6066.CIR-19-0398. |
[17] | Roh W, Chen PL, Reuben A, et al. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance[J]. Sci Transl Med, 2017, 9(379): eaah3560. DOI: 10.1126/scitranslmed.aah3560. |
[18] | Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance[J]. Nature, 2014, 515(7528): 568-571. DOI: 10.1038/nature13954. |
[19] | Hogan SA, Courtier A, Cheng PF, et al. Peripheral blood TCR repertoire profiling may facilitate patient stratification for immunotherapy against melanoma[J]. Cancer Immunol Res, 2019, 7(1): 77-85. DOI: 10.1158/2326-6066.CIR-18-0136. |
[20] | Hopkins AC, Yarchoan M, Durham JN, et al. T cell receptor repertoire features associated with survival in immunotherapy-treated pancreatic ductal adenocarcinoma[J]. JCI Insight, 2018, 3(13): 122092. DOI: 10.1172/jci.insight.122092. |
[21] | Liu W, Chen C, Li C, et al. Comprehensive analysis of immune responses to neoadjuvant immunotherapy in resectable non-small cell lung cancer[J]. Ann Surg Oncol, 2024, 31(13): 9332-9343. DOI: 10.1245/s10434-024-16053-7. |
[22] | Someya M, Tokita S, Kanaseki T, et al. Combined chemoradiotherapy and programmed cell death-ligand 1 blockade leads to changes in the circulating T-cell receptor repertoire of patients with non-small-cell lung cancer[J]. Cancer Sci, 2022, 113(12): 4394-4400. DOI: 10.1111/cas.15566. |
[23] | Öjlert ÅK, Nebdal D, Snapkov I, et al. Dynamic changes in the T cell receptor repertoire during treatment with radiotherapy combined with an immune checkpoint inhibitor[J]. Mol Oncol, 2021, 15(11): 2958-2968. DOI: 10.1002/1878-0261.13082. |
[24] | Li Y, Zheng Y, Liu T, et al. The potential and promise for clinical application of adoptive T cell therapy in cancer[J]. J Transl Med, 2024, 22(1): 413. DOI: 10.1186/s12967-024-05206-7. |
[25] | Chiffelle J, Barras D, Pétremand R, et al. Tumor-reactive T cell clonotype dynamics underlying clinical response to TIL therapy in melanoma[J]. Immunity, 2024, 57(10): 2466-2482.e12. DOI: 10.1016/j.immuni.2024.08.014. |
[26] | He J, Xiong X, Yang H, et al. Defined tumor antigen-specific T cells potentiate personalized TCR-T cell therapy and prediction of immunotherapy response[J]. Cell Res, 2022, 32(6): 530-542. DOI: 10.1038/s41422-022-00627-9. |
[27] | Gupta M, Wahi A, Sharma P, et al. Recent advances in cancer vaccines: challenges, achievements, and futuristic prospects[J]. Vaccines (Basel), 2022, 10(12): 2011. DOI: 10.3390/vaccines10122011. |
[28] | Wang B, Peng X, Li J, et al. Personalized mRNA vaccine combined with PD-1 inhibitor therapy in a patient with advanced esophageal squamous cell carcinoma[J]. Am J Cancer Res, 2024, 14(8): 3896-3904. DOI: 10.62347/NVFB3780. |
[29] | Sheikh N, Cham J, Zhang L, et al. Clonotypic diversification of intratumoral T cells following sipuleucel-T treatment in prostate cancer subjects[J]. Cancer Res, 2016, 76(13): 3711-3718. DOI: 10.1158/0008-5472.CAN-15-3173. |
[30] | Yan P, Liu Y, Zhang M, et al. Reconstitution of peripheral blood T cell receptor β immune repertoire in immune checkpoint inhibitors associated myocarditis[J]. Cardiooncology, 2024, 10(1): 35. DOI: 10.1186/s40959-024-00230-4. |
[31] | Lozano AX, Chaudhuri AA, Nene A, et al. T cell characteristics associated with toxicity to immune checkpoint blockade in patients with melanoma[J]. Nat Med, 2022, 28(2): 353-362. DOI: 10.1038/s41591-021-01623-z. |
[32] | Pai JA, Satpathy AT. High-throughput and single-cell T cell receptor sequencing technologies[J]. Nat Methods, 2021, 18(8): 881-892. DOI: 10.1038/s41592-021-01201-8. |
[33] | Cui C, Tian X, Wu J, et al. T cell receptor β-chain repertoire analysis of tumor-infiltrating lymphocytes in pancreatic cancer[J]. Cancer Sci, 2019, 110(1): 61-71. DOI: 10.1111/cas.13877. |
[34] | Yang H, Wang Y, Jia Z, et al. Characteristics of T-cell receptor repertoire and correlation with EGFR mutations in all stages of lung cancer[J]. Front Oncol, 2021, 11: 537735. DOI: 10.3389/fonc.2021.537735. |
[35] | Shao H, Ou Y, Wang T, et al. Differences in TCR-Vβ repertoire and effector phenotype between tumor infiltrating lymphocytes and peripheral blood lymphocytes increase with age[J]. PLoS One, 2014, 9(7): e102327. DOI: 10.1371/journal.pone.0102327. |
[36] | Li S, Yu W, Xie F, et al. Neoadjuvant therapy with immune checkpoint blockade, antiangiogenesis, and chemotherapy for locally advanced gastric cancer[J]. Nat Commun, 2023, 14(1): 8. DOI: 10.1038/s41467-022-35431-x. |
[37] | Xie N, Shen G, Gao W, et al. Neoantigens: promising targets for cancer therapy[J]. Signal Transduct Target Ther, 2023, 8(1): 9. DOI: 10.1038/s41392-022-01270-x. |
[38] | Candia M, Kratzer B, Pickl WF. On peptides and altered peptide ligands: from origin, mode of action and design to clinical application (immunotherapy)[J]. Int Arch Allergy Immunol, 2016, 170(4): 211-233. DOI: 10.1159/000448756. |
[39] | Jokinen E, Huuhtanen J, Mustjoki S, et al. Predicting recognition between T cell receptors and epitopes with TCRGP[J]. PLoS Comput Biol, 2021, 17(3): e1008814. DOI: 10.1371/journal.pcbi.1008814. |
[40] | Gao Y, Gao Y, Fan Y, et al. Pan-peptide meta learning for T-cell receptor-antigen binding recognition[J]. Nat Mach Intell, 2023, 5(3): 236-249. DOI: 10.1038/s42256-023-00619-3. |
[41] | Feng Z, Chen J, Hai Y, et al. Sliding-attention transformer neural architecture for predicting T cell receptor-antigen-human leucocyte antigen binding[J]. Nat Mach Intell, 2024, 6(10): 1216-1230. DOI: 10.1038/s42256-024-00901-y. |
[42] | Yang B, Li X, Zhang W, et al. Spatial heterogeneity of infiltrating T cells in high-grade serous ovarian cancer revealed by multi-omics analysis[J]. Cell Rep Med, 2022, 3(12): 100856. DOI: 10.1016/j.xcrm.2022.100856. |
[1] | Sun Yujiao, Yu Meili, Ma Wenjing, Sun Longmei, Zhu Zhaofeng, Zheng Yuanyuan. Advances in the clinical application of neoadjuvant immunotherapy for resectable locally advanced esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2025, 52(5): 309-314. |
[2] | Liu Haiyan, Zhang Chao. A predictive model for immunotherapy efficacy in non-small cell lung cancer constructed based on CT image-weighted radiomics score [J]. Journal of International Oncology, 2025, 52(4): 202-208. |
[3] | Liu Qianyi, Dong Hongmin, Wang Wenling, Wang Gang, Chen Wanghua. Clinical efficacy and safety of radiotherapy combined with chemotherapy and immunotherapy for HER2-negative locally advanced or advanced gastric cancer [J]. Journal of International Oncology, 2025, 52(4): 209-216. |
[4] | Wen Yingmei, Xia Jinxiong, Wang Yuanyuan, Yao Yi. Impacts of radiotherapy on anti-tumor immunity:a comprehensive review from the fundamental to the clinical [J]. Journal of International Oncology, 2025, 52(4): 231-236. |
[5] | Ouyang Surui, Sun Mengying, Tang Zhuang, Li Jin, He Jingdong. Research progress of intratumoral immune injection of drugs and drug delivery carriers [J]. Journal of International Oncology, 2025, 52(3): 169-175. |
[6] | Wang Zhiying, Sheng Lijun. Research progress of peripheral blood biomarkers in immunotherapy of non-small cell lung cancer [J]. Journal of International Oncology, 2025, 52(3): 180-185. |
[7] | Wang Xibo, Tian Baowen, Chen Shiqiao. Mechanism of Breg cell in tumor immune escape and related therapeutic targets [J]. Journal of International Oncology, 2025, 52(2): 107-112. |
[8] | Chen Ruyan, Fu Zhenming. Current status and advances in immunotherapy for advanced renal cell carcinoma [J]. Journal of International Oncology, 2025, 52(2): 124-128. |
[9] | Huang Zhen, Yan Fei, Ma Yanling, Sun Jianhai. Research progress in targeted and immunotherapy for esophageal cancer [J]. Journal of International Oncology, 2025, 52(1): 53-59. |
[10] | Wu Yang, Li Tian, Zhang Runbing, Shi Tingting, Gao Chun, Zheng Xiaofeng, Zhang Jiucong. Research progress in immunotherapy and targeted therapy for gastric cancer and esophagogastric junction cancer [J]. Journal of International Oncology, 2024, 51(9): 595-600. |
[11] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[12] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[13] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[14] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[15] | Yang Hao, Shi Guidong, Zhang Chengcheng, Zhang Yue, Zhang Liwen, Fu Maoyong. Comparison of efficacy and safety between sintilimab and tislelizumab in neoadjuvant therapy for advanced esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(4): 210-216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||