Journal of International Oncology ›› 2025, Vol. 52 ›› Issue (3): 169-175.doi: 10.3760/cma.j.cn371439-20241021-00026
• Review • Previous Articles Next Articles
Ouyang Surui, Sun Mengying, Tang Zhuang, Li Jin, He Jingdong()
Received:
2024-10-21
Revised:
2024-11-27
Online:
2025-03-08
Published:
2025-04-02
Contact:
He Jingdong,Email:Supported by:
Ouyang Surui, Sun Mengying, Tang Zhuang, Li Jin, He Jingdong. Research progress of intratumoral immune injection of drugs and drug delivery carriers[J]. Journal of International Oncology, 2025, 52(3): 169-175.
[1] | Yuan J, Khilnani A, Brody J, et al. Current strategies for intratumoural immunotherapy-beyond immune checkpoint inhibition[J]. Eur J Cancer, 2021, 157: 493-510. DOI: 10.1016/j.ejca.2021.08.004. |
[2] |
Xu W, Atkinson VG, Menzies AM. Intratumoural immunotherapies in oncology[J]. Eur J Cancer, 2020, 127: 1-11. DOI: 10.1016/j.ejca.2019.12.007.
pmid: 31962197 |
[3] |
Melero I, Castanon E, Alvarez M, et al. Intratumoural administration and tumour tissue targeting of cancer immunotherapies[J]. Nat Rev Clin Oncol, 2021, 18(9): 558-576. DOI: 10.1038/s41571-021-00507-y.
pmid: 34006998 |
[4] | Hamid O, Ismail R, Puzanov I. Intratumoral immunotherapy-update 2019[J]. Oncologist, 2020, 25(3): e423-e438. DOI: 10.1634/theoncologist.2019-0438. |
[5] | Som A, Rosenboom JG, Chandler A, et al. Image-guided intratumoral immunotherapy: developing a clinically practical technology[J]. Adv Drug Deliv Rev, 2022, 189: 114505. DOI: 10.1016/j.addr.2022.114505. |
[6] |
Tselikas L, Dardenne A, de Baere T, et al. Feasibility, safety and efficacy of human intra-tumoral immuno-therapy. Gustave Roussy's initial experience with its first 100 patients[J]. Eur J Cancer, 2022, 172: 1-12. DOI: 10.1016/j.ejca.2022.05.024.
pmid: 35724442 |
[7] | Zhang Z, Liu X, Chen D, et al. Radiotherapy combined with immunotherapy: the dawn of cancer treatment[J]. Signal Transduct Target Ther, 2022, 7(1): 258. DOI: 10.1038/s41392-022-01102-y. |
[8] |
van Puffelen JH, Keating ST, Oosterwijk E, et al. Trained immunity as a molecular mechanism for BCG immunotherapy in bladder cancer[J]. Nat Rev Urol, 2020, 17(9): 513-525. DOI: 10.1038/s41585-020-0346-4.
pmid: 32678343 |
[9] | Janku F, Zhang HH, Pezeshki A, et al. Intratumoral injection of clostridium novyi-NT spores in patients with treatment-refractory advanced solid tumors[J]. Clin Cancer Res, 2021, 27(1): 96-106. DOI: 10.1158/1078-0432.CCR-20-2065. |
[10] | Redenti A, Im J, Redenti B, et al. Probiotic neoantigen delivery vectors for precision cancer immunotherapy[J]. Nature, 2024, 635(8038): 453-461. DOI: 10.1038/s41586-024-08033-4. |
[11] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. DOI: 10.3760/cma.j.cn371439-20240119-00062. |
[12] | Ferrucci PF, Pala L, Conforti F, et al. Talimogene laherparepvec (T-VEC): an intralesional cancer immunotherapy for advanced melanoma[J]. Cancers (Basel), 2021, 13(6): 1383. DOI: 10.3390/cancers13061383. |
[13] |
Andtbacka RHI, Collichio F, Harrington KJ, et al. Final analyses of OPTiM: a randomized phase Ⅲ trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage Ⅲ-Ⅳ melanoma[J]. J Immunother Cancer, 2019, 7(1): 145. DOI: 10.1186/s40425-019-0623-z.
pmid: 31171039 |
[14] | Chesney JA, Puzanov I, Collichio FA, et al. Talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone for advanced melanoma: 5-year final analysis of a multicenter, randomized, open-label, phase Ⅱ trial[J]. J Immunother Cancer, 2023, 11(5): e006270. DOI: 10.1136/jitc-2022-006270. |
[15] | Mondal M, Guo J, He P, et al. Recent advances of oncolytic virus in cancer therapy[J]. Hum Vaccin Immunother, 2020, 16(10): 2389-2402. DOI: 10.1080/21645515.2020.1723363. |
[16] |
Dolladille C, Ederhy S, Sassier M, et al. Immune checkpoint inhibitor rechallenge after immune-related adverse events in patients with cancer[J]. JAMA Oncol, 2020, 6(6): 865-871. DOI: 10.1001/jamaoncol.2020.0726.
pmid: 32297899 |
[17] |
Algazi A, Bhatia S, Agarwala S, et al. Intratumoral delivery of tavokinogene telseplasmid yields systemic immune responses in metastatic melanoma patients[J]. Ann Oncol, 2020, 31(4): 532-540. DOI: 10.1016/j.annonc.2019.12.008.
pmid: 32147213 |
[18] | 仇海乐, 戎冬文, 贾军梅. 肿瘤坏死因子-α瘤内注射联合化疗治疗晚期非小细胞肺癌疗效观察[J]. 肿瘤基础与临床, 2020, 33(5): 404-406. |
[19] | Liu J, Chen Z, Li Y, et al. PD-1/PD-L1 checkpoint inhibitors in tumor immunotherapy[J]. Front Pharmacol, 2021, 12: 731798. DOI: 10.3389/fphar.2021.731798. |
[20] | 周晓翠, 刘煜亮, 李桂清, 等. PD-1单克隆抗体瘤内用药对小鼠肺癌疗效的影响[J]. 免疫学杂志, 2021, 37(3): 270-276. DOI: 10.13431/j.cnki.immunol.j.20210039. |
[21] |
Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies[J]. Blood Cancer J, 2021, 11(4): 69. DOI: 10.1038/s41408-021-00459-7.
pmid: 33824268 |
[22] | Papa S, Adami A, Metoudi M, et al. Intratumoral pan-ErbB targeted CAR-T for head and neck squamous cell carcinoma: interim analysis of the T4 immunotherapy study[J]. J Immunother Cancer, 2023, 11(6): e007162. DOI: 10.1136/jitc-2023-007162. |
[23] | Melero I, Ochoa MC, Molina C, et al. Intratumoral co-injection of NK cells and NKG2A-neutralizing monoclonal antibodies[J]. EMBO Mol Med, 2023, 15(11): e17804. DOI: 10.15252/emmm.202317804. |
[24] | Duan T, Du Y, Xing C, et al. Toll-like receptor signaling and its role in cell-mediated immunity[J]. Front Immunol, 2022, 13: 812774. DOI: 10.3389/fimmu.2022.812774. |
[25] | Halwani AS, Panizo C, Isufi I, et al. Phase 1/2 study of intratumoral G100 (TLR4 agonist) with or without pembrolizumab in follicular lymphoma[J]. Leuk Lymphoma, 2022, 63(4): 821-833. DOI: 10.1080/10428194.2021.2010057. |
[26] |
Moreno V, Calvo E, Middleton MR, et al. Treatment with a retinoic acid-inducible gene Ⅰ (RIG -Ⅰ) agonist as monotherapy and in combination with pembrolizumab in patients with advanced solid tumors: results from two phase 1 studies[J]. Cancer Immunol Immunother, 2022, 71(12): 2985-2998. DOI: 10.1007/s00262-022-03191-8.
pmid: 35596791 |
[27] | Meric-Bernstam F, Sweis RF, Kasper S, et al. Combination of the sting agonist MIW815 (ADU-S100) and PD-1 inhibitor spartalizumab in advanced/metastatic solid tumors or lymphomas: an open-label, multicenter, phase Ⅰb study[J]. Clin Cancer Res, 2023, 29(1): 110-121. DOI: 10.1158/1078-0432.CCR-22-2235. |
[28] | Jiang W, Yang X, Wang X, et al. Bronchoscopic intratumoral injections of cisplatin and endostar as concomitants of standard chemotherapy to treat malignant central airway obstruction[J]. Postgrad Med J, 2022, 98(1156): 104-112. DOI: 10.1136/postgradmedj-2020-138823. |
[29] | 孙源辰, 黄瑛. 女性生殖系统恶性肿瘤超声引导下瘤内注射化疗药的疗效分析[J]. 中国医科大学学报, 2022, 51(11): 1009-1013, 1020. DOI: 10.12007/j.issn.0258-4646.2022.11.010. |
[30] | De Lombaerde E, De Wever O, De Geest BG. Delivery routes matter: safety and efficacy of intratumoral immunotherapy[J]. Biochim Biophys Acta Rev Cancer, 2021, 1875(2): 188526. DOI: 10.1016/j.bbcan.2021.188526. |
[31] | Hewitt SL, Bai A, Bailey D, et al. Durable anticancer immunity from intratumoral administration of IL-23, IL-36γ, and OX40L mRNAs[J]. Sci Transl Med, 2019, 11(477): eaat9143. DOI: 10.1126/scitranslmed.aat9143. |
[32] |
Chau CH, Steeg PS, Figg WD. Antibody-drug conjugates for cancer[J]. Lancet, 2019, 394(10200): 793-804. DOI: 10.1016/S0140-6736(19)31774-X.
pmid: 31478503 |
[33] | Fu Z, Li S, Han S, et al. Antibody drug conjugate: the "biological missile" for targeted cancer therapy[J]. Signal Transduct Target Ther, 2022, 7(1): 93. DOI: 10.1038/s41392-022-00947-7. |
[34] | Chang HP, Le HK, Shah DK. Pharmacokinetics and pharmacodynamics of antibody-drug conjugates administered via subcutaneous and intratumoral routes[J]. Pharmaceutics, 2023, 15(4): 1132. DOI: 10.3390/pharmaceutics15041132. |
[35] | Raoul JL, Forner A, Bolondi L, et al. Updated use of TACE for hepatocellular carcinoma treatment: how and when to use it based on clinical evidence[J]. Cancer Treat Rev, 2019, 72: 28-36. DOI: 10.1016/j.ctrv.2018.11.002. |
[36] | Tselikas L, de Baere T, Isoardo T, et al. Pickering emulsions with ethiodized oil and nanoparticles for slow release of intratumoral anti-CTLA4 immune checkpoint antibodies[J]. J Immunother Cancer, 2020, 8(1): e000579. DOI: 10.1136/jitc-2020-000579. |
[37] | Grindel AL, Fretellier N, Soares M, et al. Antitumoral effect of local injection of TLR-9 agonist emulsified in lipiodol with systemic anti-PD-1 in a murine model of colorectal carcinoma[J]. Front Immunol, 2023, 14: 1272246. DOI: 10.3389/fimmu.2023.1272246. |
[38] | Rizzo F, Kehr NS. Recent advances in injectable hydrogels for controlled and local drug delivery[J]. Adv Healthc Mater, 2021, 10(1): e2001341. DOI: 10.1002/adhm.202001341. |
[39] | Luo FQ, Xu W, Zhang JY, et al. An injectable nanocomposite hydrogel improves tumor penetration and cancer treatment efficacy[J]. Acta Biomater, 2022, 147: 235-244. DOI: 10.1016/j.actbio.2022.05.042. |
[40] | Wang F, Su H, Xu D, et al. Tumour sensitization via the extended intratumoural release of a sting agonist and camptothecin from a self-assembled hydrogel[J]. Nat Biomed Eng, 2020, 4(11): 1090-1101. DOI: 10.1038/s41551-020-0597-7. |
[41] | Jiang Z, Fu Y, Shen H. Development of intratumoral drug delivery based strategies for antitumor therapy[J]. Drug Des Devel Ther, 2024, 18: 2189-2202. DOI: 10.2147/DDDT.S467835. |
[42] | Bahrom H, Goncharenko AA, Fatkhutdinova LI, et al. Controllable synthesis of calcium carbonate with different geometry: comprehensive analysis of particle formation, cellular uptake, and biocompati-bility[J]. ACS Sustain Chem Eng, 2019, 7(23): 19142-19156. DOI: 10.1021/acssuschemeng.9b05128. |
[43] | Liu JQ, Zhang C, Zhang X, et al. Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanoparticles for cancer immunotherapy[J]. J Control Release, 2022, 345: 306-313. DOI: 10.1016/j.jconrel.2022.03.021. |
[44] | Bahmani B, Gong H, Luk BT, et al. Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors[J]. Nat Commun, 2021, 12(1): 1999. DOI: 10.1038/s41467-021-22311-z. |
[45] | Thong NG, Hanh VTH, Bui TT, et al. Investigation on modeling and correlating drug release profiles in the accelerated and real-time conditions to formulate leuprolide acetate-loaded biodegradable microspheres[J]. J Drug Deliv Sci Technol, 2023, 86: 104529. DOI: 10.1016/j.jddst.2023.104529. |
[46] | Ni GL, Yang G, He Y, et al. Uniformly sized hollow microspheres loaded with polydopamine nanoparticles and doxorubicin for local chemo-photothermal combination therapy[J]. Chemical Engineering Journal, 2020, 379: 122317. DOI: 10.1016/j.cej.2019.122317. |
[47] | Yang X, Yang Y, Jia Q, et al. Preparation and evaluation of irinotecan poly (lactic-co-glycolic acid) nanoparticles for enhanced anti-tumor therapy[J]. AAPS PharmSciTech, 2019, 20(3): 133. DOI: 10.1208/s12249-019-1327-x. |
[48] | Huang A, Pressnall MM, Lu R, et al. Human intratumoral therapy: Linking drug properties and tumor transport of drugs in clinical trials[J]. J Control Release, 2020, 326: 203-221. DOI: 10.1016/j.jconrel.2020.06.029. |
[49] | Smith T, Kaufman CS. Ultrasound guided thyroid biopsy[J]. Tech Vasc Interv Radiol, 2021, 24(3): 100768. DOI: 10.1016/j.tvir.2021.100768. |
[50] |
Erinjeri JP, Fine GC, Adema GJ, et al. Immunotherapy and the interventional oncologist: challenges and opportunities—a society of interventional oncology white paper[J]. Radiology, 2019, 292(1): 25-34. DOI: 10.1148/radiol.2019182326.
pmid: 31012818 |
[51] | Sheth RA, Wehrenberg-Klee E, Patel SP, et al. Intratumoral injection of immunotherapeutics: state of the art and future directions[J]. Radiology, 2024, 312(1): e232654. DOI: 10.1148/radiol.232654. |
[52] | Sheth RA, Murthy R, Hong DS, et al. Assessment of image-guided intratumoral delivery of immunotherapeutics in patients with cancer[J]. JAMA Netw Open, 2020, 3(7): e207911. DOI: 10.1001/jamanetworkopen.2020.7911. |
[1] | Wang Yi, Wang Qiangli, Zhang Jia, Yang Yijin, Wang Sheng. Relationship between the expression of SUCNR1 and YBX1 in tissues of patients with colorectal cancer liver metastases and their clinicopathological characteristics and prognosis [J]. Journal of International Oncology, 2025, 52(3): 152-157. |
[2] | Han Tao, Jia Peipei, Lu Jing. Predictive value of iRhom1,iRhom2 and TNF-α levels for the prognosis of patients with cervical cancer [J]. Journal of International Oncology, 2025, 52(3): 158-162. |
[3] | Li Zhiyuan, Jia Xiuhong. Research progress of copper death in tumor [J]. Journal of International Oncology, 2025, 52(3): 163-168. |
[4] | Zhang Baihong, Yue Hongyun. Advances in anticancer drug delivery systems [J]. Journal of International Oncology, 2025, 52(3): 176-179. |
[5] | Xing Hui, Tan Ying, Wang Xiuzhen, Li Rui, Liu Xia. Predictive analysis of NLR and TNF-α level for the efficacy of TACE combined with microwave ablation therapy in patients with massive liver cancer [J]. Journal of International Oncology, 2025, 52(2): 101-106. |
[6] | Chen Danlei, Deng Junjun, Li Miao. Progress of clinical application of circulating tumor cells in lung cancer [J]. Journal of International Oncology, 2025, 52(2): 119-123. |
[7] | Wang Zhibao, Li Guangxian, Zhang Xinxin, Cui Wei, Zhang Wei. Predictive value of MRI combined with serum lncRNA KCNQ1OT1, miR-204-5p for axillary lymph node metastasis of breast cancer [J]. Journal of International Oncology, 2025, 52(2): 89-93. |
[8] | Ji Haitao, Wang Yanfeng, Liu Yongcheng, Hao Nan. Expression and clinical significance of DHCR7 in gastric cancer based on bioinformatics analysis [J]. Journal of International Oncology, 2025, 52(2): 94-100. |
[9] | Tan Rongjian, Ou Wenting, Zhai Jiawei, Quan Zhenhao, Sun Lijun, Zhou Caijin. Effects of RRM2 on malignant biological behavior and aerobic glycolysis of gastric cancer cells by regulating CDK1 [J]. Journal of International Oncology, 2025, 52(1): 23-30. |
[10] | Gao Wei, Zhang Ling, Wu Tianlei, Hu Lili, Rong Feng. A predictive model for radiation esophagitis in esophageal cancer patients based on machine learning [J]. Journal of International Oncology, 2025, 52(1): 31-37. |
[11] | Fu Chengrui, Li Baosheng, Huang Wei. Research progress of proton therapy for esophageal cancer [J]. Journal of International Oncology, 2025, 52(1): 48-52. |
[12] | Huang Zhen, Yan Fei, Ma Yanling, Sun Jianhai. Research progress in targeted and immunotherapy for esophageal cancer [J]. Journal of International Oncology, 2025, 52(1): 53-59. |
[13] | Zhan Haifeng, Tan Zixuan, Wang Wenxue, Geng Jiawei. Research progress of circadian genes in the occurrence, development and chronotherapy of colorectal cancer [J]. Journal of International Oncology, 2025, 52(1): 60-64. |
[14] | Wei Wei, Cai Zhaoying, Qian Yayun. Effect of Marsdenia tenacissima combined with XELOX solution on disulfide apoptosis in human colorectal cancer HCT116 cells [J]. Journal of International Oncology, 2024, 51(9): 545-555. |
[15] | Yin Hao, Wu Xudong, Wang Lei. Clinical efficacy and safety analysis of helical tomotherapy for esophageal cancer [J]. Journal of International Oncology, 2024, 51(9): 578-584. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||