Journal of International Oncology ›› 2025, Vol. 52 ›› Issue (3): 176-179.doi: 10.3760/cma.j.cn371439-20240701-00027
• Review • Previous Articles Next Articles
Zhang Baihong1, Yue Hongyun2()
Received:
2024-07-01
Revised:
2024-07-20
Online:
2025-03-08
Published:
2025-04-02
Contact:
Yue Hongyun,Email:Supported by:
Zhang Baihong, Yue Hongyun. Advances in anticancer drug delivery systems[J]. Journal of International Oncology, 2025, 52(3): 176-179.
[1] |
Zhao Z, Ukidve A, Kim J, et al. Targeting strategies for tissue-specific drug delivery[J]. Cell, 2020, 181(1): 151-167. DOI: 10.1016/j.cell.2020.02.001.
pmid: 32243788 |
[2] |
Vargason AM, Anselmo AC, Mitragotri S. The evolution of commercial drug delivery technologies[J]. Nat Biomed Eng, 2021, 5(9): 951-967. DOI: 10.1038/s41551-021-00698-w.
pmid: 33795852 |
[3] |
Nelson BJ, Pané S. Delivering drugs with microrobots[J]. Science, 2023, 382(6675): 1120-1122. DOI: 10.1126/science.adh3073.
pmid: 38060660 |
[4] |
Huayamares SG, Loughrey D, Kim H, et al. Nucleic acid-based drugs for patients with solid tumours[J]. Nat Rev Clin Oncol, 2024, 21(6): 407-427. DOI: 10.1038/s41571-024-00883-1.
pmid: 38589512 |
[5] | Jiang Y, Lyu Z, Ralahy B, et al. Dendrimer nanosystems for adaptive tumor-assisted drug delivery via extracellular vesicle hijacking[J]. Proc Natl Acad Sci U S A, 2023, 120(7): e2215308120. DOI: 10.1073/pnas.2215308120. |
[6] | Zhang Y, Liu F, Zhang Y, et al. Self-powered, light-controlled, bioresorbable platforms for programmed drug delivery[J]. Proc Natl Acad Sci U S A, 2023, 120(11): e2217734120. DOI: 10.1073/pnas.2217734120. |
[7] | Li F, Yang F, Guan C, et al. Preparation and cytotoxicity evaluation of folic acid-modified YF8-OA self-assembled lipid prodrug nanoparticles[J]. Pharm Dev Technol, 2023, 28(5): 452-459. DOI: 10.1080/10837450.2023.2206487. |
[8] | Abdul Rahman A, Mohd Isa IL, Tofail SAM, et al. Modification of living diatom, Thalassiosira weissflogii, with a calcium precursor through a calcium uptake mechanism: a next generation biomaterial for advanced delivery systems[J]. ACS Appl Bio Mater, 2024, 7(6): 4102-4115. DOI: 10.1021/acsabm.4c00431. |
[9] | Peng X, Tang S, Tang D, et al. Autonomous metal-organic framework nanorobots for active mitochondria-targeted cancer therapy[J]. Sci Adv, 2023, 9(23): eadh1736. DOI: 10.1126/sciadv.adh1736. |
[10] | Gwisai T, Mirkhani N, Christiansen MG, et al. Magnetic torque-driven living microrobots for increased tumor infiltration[J]. Sci Robot, 2022, 7(71): eabo0665. DOI: 10.1126/scirobotics.abo0665. |
[11] |
Horns F, Martinez JA, Fan C, et al. Engineering RNA export for measurement and manipulation of living cells[J]. Cell, 2023, 186(17): 3642-3658.e32. DOI: 10.1016/j.cell.2023.06.013.
pmid: 37437570 |
[12] | Cao Y, Langer R, Ferrara N. Targeting angiogenesis in oncology, ophthalmology and beyond[J]. Nat Rev Drug Discov, 2023, 22(6): 476-495. DOI: 10.1038/s41573-023-00671-z. |
[13] | Kim J, Lee S, Kim Y, et al. In situ self-assembly for cancer therapy and imaging[J]. Nat Rev Mater, 2023, 8(11): 710-725. DOI: 10.1038/s41578-023-00589-3. |
[14] | Wei L, Li G, Lu T, et al. Functionalized graphene oxide as drug delivery systems for platinum anticancer drugs[J]. J Pharm Sci, 2021, 110(11): 3631-3638. DOI: 10.1016/j.xphs.2021.07.009. |
[15] |
Raimondo TM, Reed K, Shi D, et al. Delivering the next generation of cancer immunotherapies with RNA[J]. Cell, 2023, 186(8): 1535-1540. DOI: 10.1016/j.cell.2023.02.031.
pmid: 37059063 |
[16] | Tsuchida CA, Wasko KM, Hamilton JR, et al. Targeted nonviral delivery of genome editors in vivo[J]. Proc Natl Acad Sci U S A, 2024, 121(11): e2307796121. DOI: 10.1073/pnas.2307796121. |
[17] | Berillo D, Yeskendir A, Zharkinbekov Z, et al. Peptide-based drug delivery systems[J]. Medicina (Kaunas), 2021, 57(11): 1209. DOI: 10.3390/medicina57111209. |
[18] | Tarantino P, Carmagnani Pestana R, Corti C, et al. Antibody-drug conjugates: smart chemotherapy delivery across tumor histologies[J]. CA Cancer J Clin, 2022, 72(2): 165-182. DOI: 10.3322/caac.21705. |
[19] |
Mair MJ, Bartsch R, Le Rhun E, et al. Understanding the activity of antibody-drug conjugates in primary and secondary brain tumours[J]. Nat Rev Clin Oncol, 2023, 20(6): 372-389. DOI: 10.1038/s41571-023-00756-z.
pmid: 37085569 |
[20] | Alapan Y, Yasa O, Schauer O, et al. Soft erythrocyte-based bacterial microswimmers for cargo delivery[J]. Sci Robot, 2018, 3(17): eaar4423. DOI: 10.1126/scirobotics.aar4423. |
[21] | Tang S, Zhang F, Gong H, et al. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery[J]. Sci Robot, 2020, 5(43): eaba6137. DOI: 10.1126/scirobotics.aba6137. |
[22] | Zhang H, Li Z, Gao C, et al. Dual-responsive biohybrid neutrobots for active target delivery[J]. Sci Robot, 2021, 6(52): eaaz9519. DOI: 10.1126/scirobotics.aaz9519. |
[23] | Baker DJ, Arany Z, Baur JA, et al. CAR T therapy beyond cancer: the evolution of a living drug[J]. Nature, 2023, 619(7971): 707-715. DOI: 10.1038/s41586-023-06243-w. |
[24] | Baulu E, Gardet C, Chuvin N, et al. TCR-engineered T cell therapy in solid tumors: State of the art and perspectives[J]. Sci Adv, 2023, 9(7): eadf3700. DOI: 10.1126/sciadv.adf3700. |
[25] | Fang RH, Gao W, Zhang L. Targeting drugs to tumours using cell membrane-coated nanoparticles[J]. Nat Rev Clin Oncol, 2023, 20(1): 33-48. DOI: 10.1038/s41571-022-00699-x. |
[26] | Alsaiari SK, Qutub SS, Sun S, et al. Sustained and targeted delivery of checkpoint inhibitors by metal-organic frameworks for cancer immunotherapy[J]. Sci Adv, 2021, 7(4): eabe7174. DOI: 10.1126/sciadv.abe7174. |
[27] | Akolpoglu MB, Alapan Y, Dogan NO, et al. Magnetically steerable bacterial microrobots moving in 3D biological matrices for stimuli-responsive cargo delivery[J]. Sci Adv, 2022, 8(28): eabo6163. DOI: 10.1126/sciadv.abo6163. |
[28] |
Banskota S, Raguram A, Suh S, et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins[J]. Cell, 2022, 185(2): 250-265.e16. DOI: 10.1016/j.cell.2021.12.021.
pmid: 35021064 |
[29] | Zhang F, Li Z, Duan Y, et al. Gastrointestinal tract drug delivery using algae motors embedded in a degradable capsule[J]. Sci Robot, 2022, 7(70): eabo4160. DOI: 10.1126/scirobotics.abo4160. |
[30] | Berger S, Lächelt U, Wagner E. Dynamic carriers for therapeutic RNA delivery[J]. Proc Natl Acad Sci U S A, 2024, 121(11): e2307799120. DOI: 10.1073/pnas.2307799120. |
[31] |
Madigan V, Zhang F, Dahlman JE. Drug delivery systems for CRISPR-based genome editors[J]. Nat Rev Drug Discov, 2023, 22(11): 875-894. DOI: 10.1038/s41573-023-00762-x.
pmid: 37723222 |
[32] |
Raguram A, Banskota S, Liu DR. Therapeutic in vivo delivery of gene editing agents[J]. Cell, 2022, 185(15): 2806-2827. DOI: 10.1016/j.cell.2022.03.045.
pmid: 35798006 |
[33] | 张百红, 岳红云. 新作用机制的抗肿瘤药物进展[J]. 国际肿瘤学杂志, 2024, 51(6): 354-358. DOI: 10.3760/cma.j.cn371439-20240318-00061. |
[1] | Wang Yi, Wang Qiangli, Zhang Jia, Yang Yijin, Wang Sheng. Relationship between the expression of SUCNR1 and YBX1 in tissues of patients with colorectal cancer liver metastases and their clinicopathological characteristics and prognosis [J]. Journal of International Oncology, 2025, 52(3): 152-157. |
[2] | Han Tao, Jia Peipei, Lu Jing. Predictive value of iRhom1,iRhom2 and TNF-α levels for the prognosis of patients with cervical cancer [J]. Journal of International Oncology, 2025, 52(3): 158-162. |
[3] | Li Zhiyuan, Jia Xiuhong. Research progress of copper death in tumor [J]. Journal of International Oncology, 2025, 52(3): 163-168. |
[4] | Ouyang Surui, Sun Mengying, Tang Zhuang, Li Jin, He Jingdong. Research progress of intratumoral immune injection of drugs and drug delivery carriers [J]. Journal of International Oncology, 2025, 52(3): 169-175. |
[5] | Wang Zhiying, Sheng Lijun. Research progress of peripheral blood biomarkers in immunotherapy of non-small cell lung cancer [J]. Journal of International Oncology, 2025, 52(3): 180-185. |
[6] | Xing Hui, Tan Ying, Wang Xiuzhen, Li Rui, Liu Xia. Predictive analysis of NLR and TNF-α level for the efficacy of TACE combined with microwave ablation therapy in patients with massive liver cancer [J]. Journal of International Oncology, 2025, 52(2): 101-106. |
[7] | Wang Xibo, Tian Baowen, Chen Shiqiao. Mechanism of Breg cell in tumor immune escape and related therapeutic targets [J]. Journal of International Oncology, 2025, 52(2): 107-112. |
[8] | Ye Yongying, Zou Yan, Chen Tianming, Wu Weili. Research progress of clock gene Period family in head and neck squamous cell carcinoma [J]. Journal of International Oncology, 2025, 52(2): 113-118. |
[9] | Chen Danlei, Deng Junjun, Li Miao. Progress of clinical application of circulating tumor cells in lung cancer [J]. Journal of International Oncology, 2025, 52(2): 119-123. |
[10] | Chen Ruyan, Fu Zhenming. Current status and advances in immunotherapy for advanced renal cell carcinoma [J]. Journal of International Oncology, 2025, 52(2): 124-128. |
[11] | Chinese Society of Clinical Oncology-Supportive Care and Rehabilitation Committee, Chinese Expert Consensus Working Group on Cancer-related Anorexia . Chinese expert consensus on the diagnosis and treatment of cancer-related anorexia [J]. Journal of International Oncology, 2025, 52(2): 67-78. |
[12] | Wang Zhibao, Li Guangxian, Zhang Xinxin, Cui Wei, Zhang Wei. Predictive value of MRI combined with serum lncRNA KCNQ1OT1, miR-204-5p for axillary lymph node metastasis of breast cancer [J]. Journal of International Oncology, 2025, 52(2): 89-93. |
[13] | Ji Haitao, Wang Yanfeng, Liu Yongcheng, Hao Nan. Expression and clinical significance of DHCR7 in gastric cancer based on bioinformatics analysis [J]. Journal of International Oncology, 2025, 52(2): 94-100. |
[14] | Tan Rongjian, Ou Wenting, Zhai Jiawei, Quan Zhenhao, Sun Lijun, Zhou Caijin. Effects of RRM2 on malignant biological behavior and aerobic glycolysis of gastric cancer cells by regulating CDK1 [J]. Journal of International Oncology, 2025, 52(1): 23-30. |
[15] | Gao Wei, Zhang Ling, Wu Tianlei, Hu Lili, Rong Feng. A predictive model for radiation esophagitis in esophageal cancer patients based on machine learning [J]. Journal of International Oncology, 2025, 52(1): 31-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||