Journal of International Oncology ›› 2025, Vol. 52 ›› Issue (1): 23-30.doi: 10.3760/cma.j.cn371439-20240607-00003
• Original Article • Previous Articles Next Articles
Tan Rongjian1, Ou Wenting2, Zhai Jiawei1, Quan Zhenhao1, Sun Lijun1, Zhou Caijin1()
Received:
2024-06-07
Revised:
2024-11-24
Online:
2025-01-08
Published:
2025-01-21
Contact:
Zhou Caijin
E-mail:zhoucaijin2021@126.com
Supported by:
Tan Rongjian, Ou Wenting, Zhai Jiawei, Quan Zhenhao, Sun Lijun, Zhou Caijin. Effects of RRM2 on malignant biological behavior and aerobic glycolysis of gastric cancer cells by regulating CDK1[J]. Journal of International Oncology, 2025, 52(1): 23-30.
"
组别 | 细胞增殖活性 | 细胞迁移(μm) | 细胞凋亡率(%) |
---|---|---|---|
si-NC组 | 1.04±0.01 | 301.83±2.75 | 8.05±0.21 |
CoCl2+si-NC组 | 1.18±0.04a | 369.67±0.76a | 5.75±0.20a |
CoCl2+si-RRM2组 | 0.84±0.03ab | 176.50±6.38ab | 28.28±0.04ab |
CoCl2+si-RRM2+ pcDNA3.1 NC组 | 0.81±0.03ab | 175.83±3.69ab | 30.18±1.51ab |
CoCl2+si-RRM2+ pcDNA3.1 CDK1组 | 0.93±0.05abc | 254.17±1.61abc | 17.79±0.22abc |
F值 | 73.82 | 1 600.01 | 787.15 |
P值 | <0.001 | <0.001 | <0.001 |
"
组别 | ENO1 | RRM2 | HK2 | PKM2 | GLUT1 | p-CDK1/CDK1 |
---|---|---|---|---|---|---|
si-NC组 | 1.00±0.08 | 1.00±0.09 | 1.01±0.17 | 1.00±0.06 | 1.00±0.13 | 1.00±0.09 |
CoCl2+si-NC组 | 1.22±0.19a | 1.23±0.13a | 1.87±0.44a | 1.30±0.14a | 1.57±0.37a | 1.10±1.00 |
CoCl2+si-RRM2组 | 0.42±0.02ab | 0.28±0.01ab | 0.29±0.19ab | 0.42±0.03ab | 0.16±0.06ab | 0.48±0.37ab |
CoCl2+si-RRM2+ pcDNA3.1 NC组 | 0.41±0.09ab | 0.28±0.02ab | 0.30±0.22ab | 0.44±0.07ab | 0.14±0.06a | 0.47±0.28ab |
CoCl2+si-RRM2+ pcDNA3.1 CDK1组 | 0.74±0.08abc | 0.79±0.11abc | 0.54±0.13ab | 0.79±0.15abc | 0.55±0.20abc | 0.65±0.08abc |
F值 | 32.70 | 72.37 | 20.31 | 40.24 | 27.13 | 48.14 |
P值 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
[1] | Guan WL, He Y, Xu RH. Gastric cancer treatment: recent progress and future perspectives[J]. J Hematol Oncol, 2023, 16(1): 57. DOI: 10.1186/s13045-023-01451-3. |
[2] |
Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism[J]. Cell Metab, 2016, 23(1): 27-47. DOI: 10.1016/j.cmet.2015.12.006.
pmid: 26771115 |
[3] | Fernández-Ramos D, Martínez-Chantar ML. NEDDylation in liver cancer: the regulation of the RNA binding protein Hu antigen R[J]. Pancreatology, 2015, 15(S4): S49-S54. DOI: 10.1016/j.pan.2015.03.006. |
[4] | Sun X, Peng Y, Zhao J, et al. Discovery and development of tumor glycolysis rate-limiting enzyme inhibitors[J]. Bioorg Chem, 2021, 112: 104891. DOI: 10.1016/j.bioorg.2021.104891. |
[5] | Zuo Z, Zhou Z, Chang Y, et al. Ribonucleotide reductase M2 (RRM2): regulation, function and targeting strategy in human cancer[J]. Genes Dis, 2022, 11(1): 218-233. DOI: 10.1016/j.gendis.2022.11.022. |
[6] |
Chabes A, Thelander L. Controlled protein degradation regulates ribonucleotide reductase activity in proliferating mammalian cells during the normal cell cycle and in response to DNA damage and replication blocks[J]. J Biol Chem, 2000, 275(23): 17747-17753. DOI: 10.1074/jbc.M000799200.
pmid: 10747958 |
[7] |
Zhong Z, Cao Y, Yang S, et al. Overexpression of RRM2 in gastric cancer cell promotes their invasiveness via AKT/NF-κB signaling pathway[J]. Pharmazie, 2016, 71(5): 280-284.
pmid: 27348973 |
[8] |
Zhao Y, Xue S, Wei D, et al. Membrane RRM2-positive cells represent a malignant population with cancer stem cell features in intrahepatic cholangiocarcinoma[J]. J Exp Clin Cancer Res, 2024, 43(1): 255. DOI: 10.1186/s13046-024-03174-w.
pmid: 39243109 |
[9] | Nunes C, Depestel L, Mus L, et al. RRM2 enhances MYCN-driven neuroblastoma formation and acts as a synergistic target with CHK1 inhibition[J]. Sci Adv, 2022, 8(28): eabn1382. DOI: 10.1126/sciadv.abn1382. |
[10] |
Li J, Pang J, Liu Y, et al. Suppression of RRM2 inhibits cell proliferation, causes cell cycle arrest and promotes the apoptosis of human neuroblastoma cells and in human neuroblastoma RRM2 is suppressed following chemotherapy[J]. Oncol Rep, 2018, 40(1): 355-360. DOI: 10.3892/or.2018.6420.
pmid: 29749541 |
[11] |
Fu K, Zhang K, Zhang X. LncRNA HOTAIR facilitates proliferation and represses apoptosis of retinoblastoma cells through the miR-20b-5p/RRM2/PI3K/AKT axis[J]. Orphanet J Rare Dis, 2022, 17(1): 119. DOI: 10.1186/s13023-022-02206-y.
pmid: 35248107 |
[12] | Li S, Mai H, Zhu Y, et al. MicroRNA-4500 inhibits migration, invasion, and angiogenesis of breast cancer cells via RRM2-dependent MAPK signaling pathway[J]. Mol Ther Nucleic Acids, 2020, 21: 278-289. DOI: 10.1016/j.omtn.2020.04.018. |
[13] |
Kang W, Tong JH, Chan AW, et al. Targeting ribonucleotide reductase M2 subunit by small interfering RNA exerts anti-oncogenic effects in gastric adenocarcinoma[J]. Oncol Rep, 2014, 31(6): 2579-2586. DOI: 10.3892/or.2014.3148.
pmid: 24756820 |
[14] |
Furuta E, Okuda H, Kobayashi A, et al. Metabolic genes in cancer: their roles in tumor progression and clinical implications[J]. Biochim Biophys Acta, 2010, 1805(2): 141-152. DOI: 10.1016/j.bbcan.2010.01.005.
pmid: 20122995 |
[15] | Ohba S, Tang Y, Johannessen TA, et al. PKM2 interacts with the Cdk1-CyclinB complex to facilitate cell cycle progression in gliomas[J]. Front Oncol, 2022, 12: 844861. DOI: 10.3389/fonc.2022.844861. |
[16] | Santamaría D, Barrière C, Cerqueira A, et al. Cdk1 is sufficient to drive the mammalian cell cycle[J]. Nature, 2007, 448(7155): 811-815. DOI: 10.1038/nature06046. |
[17] | Jiang H, Zhang D, Aleksandrovich KD, et al. RRM2 mediates the anti-tumor effect of the natural product pectolinarigenin on glioblastoma through promoting CDK1 protein degradation by increasing autophagic flux[J]. Front Oncol, 2022, 12: 887294. DOI: 10.3389/fonc.2022.887294. |
[1] | Ji Haitao, Wang Yanfeng, Liu Yongcheng, Hao Nan. Expression and clinical significance of DHCR7 in gastric cancer based on bioinformatics analysis [J]. Journal of International Oncology, 2025, 52(2): 94-100. |
[2] | Wu Yang, Li Tian, Zhang Runbing, Shi Tingting, Gao Chun, Zheng Xiaofeng, Zhang Jiucong. Research progress in immunotherapy and targeted therapy for gastric cancer and esophagogastric junction cancer [J]. Journal of International Oncology, 2024, 51(9): 595-600. |
[3] | Liu Wenhui, Yin Ping, Qi Jie. Diagnostic value of detection of serum G-17,sB7-H3,and DKK1 for early gastric cancer [J]. Journal of International Oncology, 2024, 51(8): 498-503. |
[4] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[5] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[6] | Xie Shuping, Sun Yahong, Wang Chao. Prediction of efficacy of early-stage tumor markers combined with NLR and PLR for immunotherapy in gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 157-165. |
[7] | Liu Yulan, Jing Haiyan, Sun Jing, Song Wei, Sha Dan. Advances in predicting efficacy and prognostic markers of immunotherapy for gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 175-180. |
[8] | Shao Huifang, Wang Xuehong, Lu Yongfu. Mechanism of action and clinical significance of CST1 in the progression of gastric cancer [J]. Journal of International Oncology, 2023, 50(8): 489-492. |
[9] | Zhu Siyu, Wang Xuehong, Li Wenqian, Liu Shu. Level of serum FABP1 and its relationship with Helicobacter pylori infection in patients with gastric cancer [J]. Journal of International Oncology, 2023, 50(6): 336-341. |
[10] | Quan Zhenhao, Xu Feipeng, Huang Zhe, Huang Xianjin, Chen Rihong, Sun Kaiyu, Hu Xu, Lin Lin. lncRNA FTX silencing inhibits gastric cancer cell proliferation through the miR-22-3p/NLRP3 inflammasome pathway [J]. Journal of International Oncology, 2023, 50(4): 202-207. |
[11] | Ji Wei, Guan Quanlin, Chen Yarui, Jiao Fuzhi, Luo Qianwen. Correlation between blood lipid level and gastric cancer [J]. Journal of International Oncology, 2023, 50(3): 183-185. |
[12] | Fan Shanlin, Wang Pinxiu, Kong Fei, Zhou Yujie, Yuan Wenzhen. Progress in the study of predictors of tumor regression grade after neoadjuvant chemotherapy for gastric cancer [J]. Journal of International Oncology, 2023, 50(2): 112-116. |
[13] | Yang Jun, Li Rong, Zeng Jianchang. Clinical efficacy of Compound Kushen Injection combined with SOX regimen in the treatment of elderly patients with advanced gastric cancer [J]. Journal of International Oncology, 2023, 50(2): 82-86. |
[14] | Deng Lili, Duan Xingyu, Li Baozhong. Advances of anti-HER2 targeted drugs and combined therapeutic regimens for gastric and esophagogastic adenocarcinoma [J]. Journal of International Oncology, 2023, 50(12): 751-757. |
[15] | Li Jiayi, Wang Yue, Shang Lanlan, Xu Xing, Zhao Yan. Practice and prospect of artificial intelligence in diagnosis and treatment of gastric cancer [J]. Journal of International Oncology, 2023, 50(11): 677-682. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||