Journal of International Oncology ›› 2025, Vol. 52 ›› Issue (1): 31-37.doi: 10.3760/cma.j.cn371439-20240806-00004
• Original Article • Previous Articles Next Articles
Gao Wei, Zhang Ling, Wu Tianlei, Hu Lili, Rong Feng()
Received:
2024-08-06
Revised:
2024-12-13
Online:
2025-01-08
Published:
2025-01-21
Contact:
Rong Feng
E-mail:wazhl1996@163.com
Supported by:
Gao Wei, Zhang Ling, Wu Tianlei, Hu Lili, Rong Feng. A predictive model for radiation esophagitis in esophageal cancer patients based on machine learning[J]. Journal of International Oncology, 2025, 52(1): 31-37.
"
临床特征 | 未发生组(n=185) | 发生组(n=91) | χ²/Z/t值 | P值 |
---|---|---|---|---|
性别 | ||||
女 | 40(21.62) | 20(21.98) | 0.01 | 0.946 |
男 | 145(78.38) | 71(78.02) | ||
食管病变部位 | ||||
上段 | 31(16.76) | 23(25.27) | ||
中段 | 123(66.49) | 52(57.14) | 3.13 | 0.209 |
下段 | 31(16.76) | 16(17.58) | ||
年龄 | 73(67,79) | 71(66,77) | -1.57 | 0.117 |
肿瘤病灶长径(cm) | 5(3,6) | 6(5,6) | -5.53 | <0.001 |
临床分期 | ||||
Ⅰ~Ⅱ期 | 65(35.14) | 26(28.57) | 1.19 | 0.276 |
Ⅲ~ⅣA期 | 120(64.86) | 65(71.43) | ||
KPS评分(分) | ||||
<90 | 83(44.86) | 55(60.44) | 5.92 | 0.015 |
≥90 | 102(55.14) | 36(39.56) | ||
ECOG评分(分) | ||||
0 | 105(56.76) | 40(43.96) | 4.01 | 0.045 |
1 | 80(43.24) | 51(56.04) | ||
白蛋白(g/L) | 39.8(37.0,43.5) | 40.4(37.1,42.9) | -0.13 | 0.895 |
血红蛋白(g/L) | 116(103,129) | 114(103,128) | -0.73 | 0.463 |
肌酐(μmol/L) | 71(61,85) | 69(58,80) | -1.24 | 0.216 |
胆固醇(mmol/L) | 4.52±1.03 | 4.49±1.02 | 1.03 | 0.305 |
甘油三酯(mmol/L) | 1.04(0.79,1.36) | 1.05(0.82,1.39) | -0.31 | 0.754 |
白细胞计数(109/L) | 6.02(4.92,7.15) | 4.23(3.51,5.99) | -6.59 | <0.001 |
淋巴细胞计数(109/L) | 1.40(0.99,1.75) | 1.27(1.00,1.65) | -0.91 | 0.364 |
中性粒细胞计数(109/L) | 4.16(3.24,5.05) | 2.40(1.58,3.80) | -6.72 | <0.001 |
血小板计数(109/L) | 185.0(147.5,232.5) | 185.0(148.0,227.0) | -0.61 | 0.541 |
高血压 | ||||
无 | 152(82.16) | 55(60.44) | 15.35 | <0.001 |
有 | 33(17.84) | 36(39.56) | ||
脑梗死 | ||||
无 | 175(94.59) | 85(93.41) | 0.16 | 0.691 |
有 | 10(5.41) | 6(6.59) | ||
糖尿病 | ||||
无 | 160(86.49) | 62(68.13) | 13.06 | <0.001 |
有 | 25(13.51) | 29(31.87) | ||
吸烟 | ||||
否 | 103(55.68) | 48(52.75) | 0.21 | 0.646 |
是 | 82(44.32) | 43(47.25) | ||
饮酒 | ||||
否 | 113(61.08) | 53(58.24) | 0.20 | 0.651 |
是 | 72(38.92) | 38(41.76) | ||
化疗方式 | ||||
铂类 | 116(62.70) | 55(60.44) | 0.13 | 0.716 |
非铂类 | 69(37.30) | 36(39.56) | ||
放疗剂量(Gy) | ||||
<50.4 | 76(41.08) | 20(21.98) | 9.81 | 0.002 |
≥50.4 | 109(58.92) | 71(78.02) |
[1] | Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(1): 17-48. DOI: 10.3322/caac.21763. |
[2] | 中国医师协会放射肿瘤治疗医师分会, 中华医学会放射肿瘤治疗学分会, 中国抗癌协会肿瘤放射治疗专业委员会. 中国食管癌放射治疗指南(2023年版)[J]. 国际肿瘤学杂志, 2024, 51(1): 1-20. DOI: 10.3760/cma.j.cn371439-20231221-00001. |
[3] | Cooper JS, Guo MD, Herskovic A, et al. Chemoradiotherapy of locally advanced esophageal cancer: long-term follow-up of a prospective randomized trial (RTOG 85-01). Radiation Therapy Oncology Group[J]. JAMA, 1999, 281(17): 1623-1627. DOI: 10.1001/jama.281.17.1623. |
[4] | 中国医师协会放射肿瘤治疗医师分会, 中华医学会放射肿瘤治疗学分会, 中国抗癌协会肿瘤放射治疗专业委员会. 中国食管鳞状细胞癌新辅助放射治疗专家共识[J]. 国际肿瘤学杂志, 2023, 50(3): 129-137. DOI: 10.3760/cma.j.cn371439-20230217-00027. |
[5] | Li C, Ni W, Wang X, et al. A phase Ⅰ/Ⅱ radiation dose escalation trial using simultaneous integrated boost technique with elective nodal irradiation and concurrent chemotherapy for unresectable esophageal cancer[J]. Radiat Oncol, 2019, 14(1): 48.DOI: 10.1186/s13014-019-1249-5. |
[6] |
Bradley J, Movsas B. Radiation esophagitis: predictive factors and preventive strategies[J]. Semin Radiat Oncol, 2004, 14(4): 280-286. DOI: 10.1016/j.semradonc.2004.06.003.
pmid: 15558501 |
[7] | Cox JD, Stetz J, Pajak TF. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC)[J]. Int J Radiat Oncol Biol Phys, 1995, 31(5): 1341-1346. DOI: 10.1016/0360-3016(95)00060-C. |
[8] |
Glide-Hurst CK, Chetty IJ. Improving radiotherapy planning, delivery accuracy, and normal tissue sparing using cutting edge technologies[J]. J Thorac Dis, 2014, 6(4): 303-318. DOI: 10.3978/j.issn.2072-1439.2013.11.10.
pmid: 24688775 |
[9] |
Everitt S, Duffy M, Bressel M, et al. Association of oesophageal radiation dose volume metrics, neutropenia and acute radiation oesophagitis in patients receiving chemoradiotherapy for non-small cell lung cancer[J]. Radiat Oncol, 2016, 11: 20. DOI: 10.1186/s13014-016-0596-8.
pmid: 26864559 |
[10] | Hirota S, Tsujino K, Endo M, et al. Dosimetric predictors of radiation esophagitis in patients treated for non-small-cell lung cancer with carboplatin/paclitaxel/radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2001, 51(2): 291-295. DOI: 10.1016/s0360-3016(01)01648-0. |
[11] | Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to machine learning, neural networks, and deep learning[J]. Transl Vis Sci Technol, 2020, 9(2): 14. DOI: 10.1167/tvst.9.2.14. |
[12] | Greener JG, Kandathil SM, Moffat L, et al. A guide to machine learning for biologists[J]. Nat Rev Mol Cell Biol, 2022, 23(1): 40-55. DOI: 10.1038/s41580-021-00407-0. |
[13] | Kang J, Schwartz R, Flickinger J, et al. Machine learning approaches for predicting radiation therapy outcomes: a clinician's perspective[J]. Int J Radiat Oncol Biol Phys, 2015, 93(5): 1127-1135. DOI: 10.1016/j.ijrobp.2015.07.2286. |
[14] | Rajula HSR, Verlato G, Manchia M, et al. Comparison of conventional statistical methods with machine learning in medicine: diag-nosis, drug development, and treatment[J]. Medicina (Kaunas), 2020, 56(9): 455. DOI: 10.3390/medicina56090455. |
[15] | 蓝柳, 莫玉珍, 赵迎喜, 等. 正常组织并发症概率模型预测食管癌患者行同步放化疗时发生中-重度急性放射性食管炎的效能[J]. 广西医学, 2019, 41(23): 2965-2969, 2976. DOI: 10.11675/j.issn.0253-4304.2019.23.05. |
[16] | Yu Y, Zheng H, Liu L, et al. Predicting severe radiation esophagitis in patients with locally advanced esophageal squamous cell carcinoma receiving definitive chemoradiotherapy: construction and validation of a model based in the clinical and dosimetric parameters as well as inflammatory indexes[J]. Front Oncol, 2021, 11: 687035. DOI: 10.3389/fonc.2021.687035. |
[17] | Yakar M, Etiz D, Metintas M, et al. Prediction of radiation pneumonitis with machine learning in stage Ⅲ lung cancer: a pilot study[J]. Technol Cancer Res Treat, 2021, 20: 15330338211016373. DOI: 10.1177/15330338211016373. |
[18] | Prendin F, Pavan J, Cappon G, et al. The importance of interpreting machine learning models for blood glucose prediction in diabetes: an analysis using SHAP[J]. Sci Rep, 2023, 13(1): 16865. DOI: 10.1038/s41598-023-44155-x. |
[19] | Liu H, Chen X, Liu X. Factors influencing secondary school students' reading literacy: an analysis based on XGBoost and SHAP methods[J]. Front Psychol, 2022, 13: 948612. DOI: 10.3389/fpsyg.2022.948612. |
[20] | Stienstra CMK, Ieritano C, Haack A, et al. Bridging the gap between differential mobility, log S, and log P using machine learning and SHAP analysis[J]. Anal Chem, 2023, 95(27): 10309-10321. DOI: 10.1021/acs.analchem.3c00921. |
[21] | Qiu J, Ke D, Lin H, et al. Using inflammatory indexes and clinical parameters to predict radiation esophagitis in patients with small-cell lung cancer undergoing chemoradiotherapy[J]. Front Oncol, 2022, 12: 898653. DOI: 10.3389/fonc.2022.898653. |
[22] |
Grundy SM. Inflammation, hypertension, and the metabolic syndrome[J]. JAMA, 2003, 290(22): 3000-3002. DOI: 10.1001/jama.290.22.3000.
pmid: 14665663 |
[23] | Mikolajczyk TP, Szczepaniak P, Vidler F, et al. Role of inflammatory chemokines in hypertension[J]. Pharmacol Ther, 2021, 223: 107799. DOI: 10.1016/j.pharmthera.2020.107799. |
[1] | Fu Chengrui, Li Baosheng, Huang Wei. Research progress of proton therapy for esophageal cancer [J]. Journal of International Oncology, 2025, 52(1): 48-52. |
[2] | Huang Zhen, Yan Fei, Ma Yanling, Sun Jianhai. Research progress in targeted and immunotherapy for esophageal cancer [J]. Journal of International Oncology, 2025, 52(1): 53-59. |
[3] | Yin Hao, Wu Xudong, Wang Lei. Clinical efficacy and safety analysis of helical tomotherapy for esophageal cancer [J]. Journal of International Oncology, 2024, 51(9): 578-584. |
[4] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei. Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study [J]. Journal of International Oncology, 2024, 51(6): 326-331. |
[5] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[6] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[7] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
[8] | Chen Qi, Xu Chenyang, Wang Yin, Lei Dapeng. Current application status of hyperspectral imaging in the diagnosis and treatment of head and neck tumor [J]. Journal of International Oncology, 2024, 51(5): 298-302. |
[9] | Wan Fang, Yang Gang, Li Rui, Wan Qijing. Expression levels and clinical significance of serum miR-497 and miR-383 in patients with esophageal cancer [J]. Journal of International Oncology, 2024, 51(4): 204-209. |
[10] | Qian Xiaotao, Shi Ziyi, Hu Ge. A real-world clinical study of immunocheckpoint inhibitor maintenance therapy after radical radiotherapy and chemotherapy in stage Ⅲ-ⅣA esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(3): 151-156. |
[11] | Xie Chao, Zhang Mingxin, Lu Ning, Miao Tao. Analysis of related factors of electrocoagulation syndrome after esophageal tumor endoscopic submucosal dissection [J]. Journal of International Oncology, 2024, 51(10): 614-619. |
[12] | Wu Qin, Wu Dong, Xie Jianlong, Luo Qinhui, Lao Liangling, Zeng Yubin, Lin Liyao. Evaluation of efficacy and safety of tislelizumab combined with chemotherapy in neoadjuvant treatment for resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(10): 620-626. |
[13] | Gao Xinyu, Li Zhenjiang, Sun Hongfu, Han Dan, Zhao Qian, Liu Chengxin, Huang Wei. Clinical application of MR-guided radiotherapy based on MR-linac in esophageal cancer patients [J]. Journal of International Oncology, 2024, 51(1): 37-42. |
[14] | Shandong Medical Association Multidisciplinary Joint Committee on Lung Cancer. Shandong Provincial Medical Association multidisciplinary standardized diagnosis and treatment guidelines for esophageal carcinoma (2023 Edition) [J]. Journal of International Oncology, 2023, 50(7): 385-397. |
[15] | Lyu Lu, Sun Pengfei. Gut flora and cervical cancer [J]. Journal of International Oncology, 2023, 50(6): 373-376. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||