Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (11): 677-682.doi: 10.3760/cma.j.cn371439-20230510-00128
• Reviews • Previous Articles Next Articles
Li Jiayi1,2,3, Wang Yue1,2,3, Shang Lanlan1,2, Xu Xing2,3,4, Zhao Yan1,2,3,4()
Received:
2023-05-10
Revised:
2023-07-02
Online:
2023-11-08
Published:
2024-01-11
Contact:
Zhao Yan
E-mail:dr.zhaoyan@126.com
Supported by:
Li Jiayi, Wang Yue, Shang Lanlan, Xu Xing, Zhao Yan. Practice and prospect of artificial intelligence in diagnosis and treatment of gastric cancer[J]. Journal of International Oncology, 2023, 50(11): 677-682.
[1] | 中国疾病预防控制中心慢性非传染性疾病预防控制中心, 国家卫生和计划生育委员会统计信息中心. 中国死因监测数据集-2016[M]. 北京: 中国科学技术出版社, 2017: 26. |
[2] | 张世豪, 冼丽英, 高敏, 等. 基于深度学习的人工智能在病理诊断的应用进展与展望[J]. 中国医学创新, 2018, 15(25): 130-133. DOI: 10.3969/j.issn.1674-4985.2018.25.035. |
[3] | Collobert R, Weston J, Bottou L, et al. Natural language processing (almost) from scratch[J]. J Mach Learn Res, 2011, 12: 2493-2537. DOI: 10.5555/1953048.2078186. |
[4] |
Simon G, DiNardo CD, Takahashi K, et al. Applying artificial intelligence to address the knowledge gaps in cancer care[J]. Oncologist, 2019, 24(6): 772-782. DOI: 10.1634/theoncologist.2018-0257.
pmid: 30446581 |
[5] | Zheng RS, Zhang SW, Zeng HM, et al. Cancer incidence and mortality in China, 2016[J]. Journal of the National Cancer Center, 2022, 2(1): 1-68. DOI: 10.1016/j.jncc.2022.02.002. |
[6] | Szeliski R. Computer vision: algorithms and applications (texts in computer science)[M]. London: Springer, 2011. DOI: 10.1007/978-1-84882-935-0. |
[7] |
Togashi K. Applications of artificial intelligence to endoscopy practice: the view from Japan Digestive Disease Week 2018[J]. Dig Endosc, 2019, 31(3): 270-272. DOI: 10.1111/den.13354.
pmid: 30681203 |
[8] | Watanabe Y, Oikawa R, Agawa S, et al. Combination of artificial intelligence-based endoscopy and miR148a methylation for gastric indefinite dysplasia diagnosis[J]. J Clin Lab Anal, 2022, 36(1): e24122. DOI: 10.1002/jcla.24122. |
[9] |
Hirasawa T, Aoyama K, Tanimoto T, et al. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images[J]. Gastric Cancer, 2018, 21(4): 653-660. DOI: 10.1007/s10120-018-0793-2.
pmid: 29335825 |
[10] |
Sakai Y, Takemoto S, Hori K, et al. Automatic detection of early gastric cancer in endoscopic images using a transferring convolutional neural network[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2018, 2018: 4138-4141. DOI: 10.1109/EMBC.2018.8513274.
pmid: 30441266 |
[11] |
Yu T, Wang X, Zhao Z, et al. Prediction of T stage in gastric carcinoma by enhanced CT and oral contrast-enhanced ultrasonography[J]. World J Surg Oncol, 2015, 13: 184. DOI: 10.1186/s12957-015-0577-7.
pmid: 25986541 |
[12] |
Choi J, Kim SG, Im JP, et al. Comparison of endoscopic ultrasonography and conventional endoscopy for prediction of depth of tumor invasion in early gastric cancer[J]. Endoscopy, 2010, 42(9): 705-713. DOI: 10.1055/s-0030-1255617.
pmid: 20652857 |
[13] | Liu DY, Gan T, Rao NN, et al. Identification of lesion images from gastrointestinal endoscope based on feature extraction of combinational methods with and without learning process[J]. Med Image Anal, 2016, 32: 281-294. DOI: 10.1016/j.media.2016.04.007. |
[14] |
Li L, Chen Y, Shen Z, et al. Convolutional neural network for the diagnosis of early gastric cancer based on magnifying narrow band imaging[J]. Gastric Cancer, 2020, 23(1): 126-132. DOI: 10.1007/s10120-019-00992-2.
pmid: 31332619 |
[15] |
Luo H, Xu G, Li C, et al. Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study[J]. Lancet Oncol, 2019, 20(12): 1645-1654. DOI: 10.1016/S1470-2045(19)30637-0.
pmid: 31591062 |
[16] | Huang Z, Liu D, Chen X, et al. Retrospective imaging studies of gastric cancer: study protocol clinical trial (SPIRIT Compliant)[J]. Medicine (Baltimore), 2020, 99(8): e19157. DOI: 10.1097/MD.0000000000019157. |
[17] |
Li C, Shi C, Zhang H, et al. Multiple instance learning for computer aided detection and diagnosis of gastric cancer with dual-energy CT imaging[J]. J Biomed Inform, 2015, 57: 358-368. DOI: 10.1016/j.jbi.2015.08.017.
pmid: 26319541 |
[18] |
Mukhopadhyay S, Feldman MD, Abels E, et al. Whole slide imaging versus microscopy for primary diagnosis in surgical pathology: a multicenter blinded randomized noninferiority study of 1992 cases (pivotal study)[J]. Am J Surg Pathol, 2018, 42(1): 39-52. DOI: 10.1097/PAS.0000000000000948.
pmid: 28961557 |
[19] | Li Y, Li X, Xie X, et al. Deep learning based gastric cancer identification[C]// 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). Washington: IEEE, 2018: 182-185. DOI: 10.1109/ISBI.2018.8363550. |
[20] |
Iizuka O, Kanavati F, Kato K, et al. Deep learning models for histopathological classification of gastric and colonic epithelial tumours[J]. Sci Rep, 2020, 10(1): 1504. DOI: 10.1038/s41598-020-58467-9.
pmid: 32001752 |
[21] | Sato Y, Sese J, Matsuyama T, et al. Preliminary study for develo-ping a navigation system for gastric cancer surgery using artificial intelligence[J]. Surg Today, 2022, 52(12): 1753-1758. DOI: 10.1007/s00595-022-02508-5. |
[22] | 金驰, 王彤. 达芬奇机器人在胃癌手术中的应用进展[J]. 临床外科杂志, 2020, 28(10): 991-994. DOI: 10.3969/j.issn.1005-6483.2020.10.028. |
[23] | 王晓鹏, 郭进, 李渊, 等. 达芬奇机器人联合淋巴示踪在进展期远端胃癌根治术中的应用[J]. 中国微创外科杂志, 2018, 18(3): 225-229. DOI: 10.3969/j.issn.1009-6604.2018.03.009. |
[24] | Adballah M, Espinel Y, Calvet L, et al. Augmented reality in laparoscopic liver resection evaluated on an ex-vivo animal model with pseudo-tumours[J]. Surg Endosc, 2022, 36(1): 833-843. DOI: 10.1007/s00464-021-08798-z. |
[25] | Luo H, Yin D, Zhang S, et al. Augmented reality navigation for liver resection with a stereoscopic laparoscope[J]. Comput Methods Programs Biomed, 2020, 187: 105099. DOI: 10.1016/j.cmpb.2019.105099. |
[26] |
Lee J, An JY, Choi MG, et al. Deep learning-based survival analysis identified associations between molecular subtype and optimal adjuvant treatment of patients with gastric cancer[J]. JCO Clin Cancer Inform, 2018, 2: 1-14. DOI: 10.1200/CCI.17.00065.
pmid: 30652558 |
[27] |
Jiang Y, Xie J, Han Z, et al. Immunomarker support vector machine classifier for prediction of gastric cancer survival and adjuvant chemotherapeutic benefit[J]. Clin Cancer Res, 2018, 24(22): 5574-5584. DOI: 10.1158/1078-0432.CCR-18-0848.
pmid: 30042208 |
[28] | Lu F, Chen Z, Yuan X, et al. MMHG:multi-modal hypergraph learning for overall survival after D 2 gastrectomy for gastric cancer[C]// 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech). Orlando: IEEE, 2017: 164-169. DOI: 10.1109/DASC-PICom-DataCom-CyberSciTec.2017.40. |
[29] | Korhani Kangi A, Bahrampour A. Predicting the survival of gastric cancer patients using artificial and bayesian neural networks[J]. Asian Pac J Cancer Prev, 2018, 19(2): 487-490. DOI: 10.22034/APJCP.2018.19.2.487. |
[30] | Jiang Y, Zhang Z, Yuan Q, et al. Predicting peritoneal recurrence and disease-free survival from CT images in gastric cancer with multitask deep learning: a retrospective study[J]. Lancet Digit Health, 2022, 4(5): e340-e350. DOI: 10.1016/S2589-7500(22)00040-1. |
[31] |
Hensler K, Waschulzik T, Mönig SP, et al. Quality-assured Efficient Engineering of Feedforward Neural Networks (QUEEN)-pretherapeutic estimation of lymph node status in patients with gastric carcinoma[J]. Methods Inf Med, 2005, 44(5): 647-654.
pmid: 16400373 |
[32] | Jagric T, Potrc S, Jagric T. Prediction of liver metastases after gastric cancer resection with the use of learning vector quantization neural networks[J]. Dig Dis Sci, 2010, 55(11): 3252-3261. DOI: 10.1007/s10620-010-1155-z. |
[33] | Su F, Sun Y, Hu Y, et al. Development and validation of a deep learning system for ascites cytopathology interpretation[J]. Gastric Cancer, 2020, 23(6): 1041-1050. DOI: 10.1007/s10120-020-01093-1. |
[34] | Nakahira H, Ishihara R, Aoyama K, et al. Stratification of gastric cancer risk using a deep neural network[J]. JGH Open, 2019, 4(3): 466-471. DOI: 10.1002/jgh3.12281. |
[35] |
Zhu Y, Wang QC, Xu MD, et al. Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy[J]. Gastrointest Endosc, 2019, 89(4): 806-815.e1. DOI: 10.1016/j.gie.2018.11.011.
pmid: 30452913 |
[1] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei. Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study [J]. Journal of International Oncology, 2024, 51(6): 326-331. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[4] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[5] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[6] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[7] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[8] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[9] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[10] | Chen Qi, Xu Chenyang, Wang Yin, Lei Dapeng. Current application status of hyperspectral imaging in the diagnosis and treatment of head and neck tumor [J]. Journal of International Oncology, 2024, 51(5): 298-302. |
[11] | Gu Fangmeng, Xu Chenyang, Lei Dapeng. Research progress on artificial intelligence-assisted electronic laryngoscopy in the diagnosis and treatment of laryngeal cancer and laryngeal precancerous lesions [J]. Journal of International Oncology, 2024, 51(5): 303-307. |
[12] | Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan. Progress of ferroptosis-related mechanisms in osteosarcoma [J]. Journal of International Oncology, 2024, 51(5): 308-311. |
[13] | Yang Hao, Shi Guidong, Zhang Chengcheng, Zhang Yue, Zhang Liwen, Fu Maoyong. Comparison of efficacy and safety between sintilimab and tislelizumab in neoadjuvant therapy for advanced esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(4): 210-216. |
[14] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[15] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||