Journal of International Oncology ›› 2024, Vol. 51 ›› Issue (12): 794-797.doi: 10.3760/cma.j.cn371439-20240522-00135
• Reviews • Previous Articles Next Articles
Received:
2024-05-22
Revised:
2024-06-11
Online:
2024-12-08
Published:
2025-01-07
Contact:
Song Qibin
E-mail:qibinsong@whu.edu.cn
Huang Huayu, Song Qibin. Role of exosomes in bone metastasis of prostate cancer[J]. Journal of International Oncology, 2024, 51(12): 794-797.
[1] | Bergengren O, Pekala KR, Matsoukas K, et al. 2022 update on prostate cancer epidemiology and risk factors—a systematic review[J]. Eur Urol, 2023, 84(2): 191-206. DOI: 10.1016/j.eururo.2023.04.021. |
[2] | Liu JZ, Dong L, Zhu YJ, et al. Prostate cancer treatment—China's perspective[J]. Cancer Lett, 2022, 550: 215927. DOI: 10.1016/j.canlet.2022.215927. |
[3] |
Ali A, Hoyle A, Haran ÁM, et al. Association of bone metastatic burden with survival benefit from prostate radiotherapy in patients with newly diagnosed metastatic prostate cancer: a secondary analysis of a randomized clinical trial[J]. JAMA Oncol, 2021, 7(4): 555-563. DOI: 10.1001/jamaoncol.2020.7857.
pmid: 33599706 |
[4] | Krylova SV, Feng D. The machinery of exosomes: biogenesis, release, and uptake[J]. Int J Mol Sci, 2023, 24(2): 1337. DOI: 10.3390/ijms24021337. |
[5] | Lv T, Li Z, Wang D, et al. Role of exosomes in prostate cancer bone metastasis[J]. Arch Biochem Biophys, 2023, 748: 109784. DOI: 10.1016/j.abb.2023.109784. |
[6] | Akoto T, Saini S. Role of exosomes in prostate cancer metastasis[J]. Int J Mol Sci, 2021, 22(7): 3528. DOI: 10.3390/ijms22073528. |
[7] | Jaudon F, Thalhammer A, Cingolani LA. Integrin adhesion in brain assembly: from molecular structure to neuropsychiatric disorders[J]. Eur J Neurosci, 2021, 53(12): 3831-3850. DOI: 10.1111/ejn.14859. |
[8] | Geng X, Chang B, Shan J. Role and correlation of exosomes and integrins in bone metastasis of prostate cancer[J]. Andrologia, 2022, 54(10): e14550. DOI: 10.1111/and.14550. |
[9] |
Fedele C, Singh A, Zerlanko BJ, et al. The αvβ6 integrin is transferred intercellularly via exosomes[J]. J Biol Chem, 2015, 290(8): 4545-4551. DOI: 10.1074/jbc.C114.617662.
pmid: 25568317 |
[10] |
Connell B, Kopach P, Ren W, et al. Aberrant integrin αv and α5 expression in prostate adenocarcinomas and bone-metastases is consistent with a bone-colonizing phenotype[J]. Transl Androl Urol, 2020, 9(4): 1630-1638. DOI: 10.21037/tau-19-763.
pmid: 32944524 |
[11] | Mao L, Wang L, Xu J, et al. The role of integrin family in bone metabolism and tumor bone metastasis[J]. Cell Death Discov, 2023, 9(1): 119. DOI: 10.1038/s41420-023-01417-x. |
[12] | Henrich SE, McMahon KM, Plebanek MP, et al. Prostate cancer extracellular vesicles mediate intercellular communication with bone marrow cells and promote metastasis in a cholesterol-dependent manner[J]. J Extracell Vesicles, 2020, 10(2): e12042. DOI: 10.1002/jev2.12042. |
[13] |
Wortzel I, Dror S, Kenific CM, et al. Exosome-mediated metastasis: communication from a distance[J]. Dev Cell, 2019, 49(3): 347-360. DOI: 10.1016/j.devcel.2019.04.011.
pmid: 31063754 |
[14] | Yu L, Sui B, Fan W, et al. Exosomes derived from osteogenic tumor activate osteoclast differentiation and concurrently inhibit osteogenesis by transferring COL1A1-targeting miRNA-92a-1-5p[J]. J Extracell Vesicles, 2021, 10(3): e12056. DOI: 10.1002/jev2.12056. |
[15] | Niland S, Riscanevo AX, Eble JA. Matrix metalloproteinases shape the tumor microenvironment in cancer progression[J]. Int J Mol Sci, 2021, 23(1): 146. DOI: 10.3390/ijms23010146. |
[16] | Deep G, Jain A, Kumar A, et al. Exosomes secreted by prostate cancer cells under hypoxia promote matrix metalloproteinases activity at pre-metastatic niches[J]. Mol Carcinog, 2020, 59(3): 323-332. DOI: 10.1002/mc.23157. |
[17] | Dai J, Escara-Wilke J, Keller JM, et al. Primary prostate cancer educates bone stroma through exosomal pyruvate kinase M2 to promote bone metastasis[J]. J Exp Med, 2019, 216(12): 2883-2899. DOI: 10.1084/jem.20190158. |
[18] |
Probert C, Dottorini T, Speakman A, et al. Communication of prostate cancer cells with bone cells via extracellular vesicle RNA; a potential mechanism of metastasis[J]. Oncogene, 2019, 38(10): 1751-1763. DOI: 10.1038/s41388-018-0540-5.
pmid: 30353168 |
[19] | Yang Z, Chen JQ, Liu TJ, et al. Knocking down AR promotes osteoblasts to recruit prostate cancer cells by altering exosomal circ-DHPS/miR-214-3p/CCL5 pathway[J]. Asian J Androl, 2024, 26(2): 195-204. DOI: 10.4103/aja202351. |
[20] | 李京羿, 陈家久, 李耀明, 等. 成骨细胞外泌体对前列腺癌细胞生物学特性的影响及潜在机制研究[J]. 陆军军医大学学报, 2024, 46(6): 544-555. DOI: 10.16016/j.2097-0927.202311002. |
[21] |
Zhang W, Zhong W, Wang B, et al. ICAM-1-mediated adhesion is a prerequisite for exosome-induced T cell suppression[J]. Dev Cell, 2022, 57(3): 329-343.e7. DOI: 10.1016/j.devcel.2022.01.002.
pmid: 35085484 |
[22] |
Lu H, Bowler N, Harshyne LA, et al. Exosomal αvβ6 integrin is required for monocyte M2 polarization in prostate cancer[J]. Matrix Biol, 2018, 70: 20-35. DOI: 10.1016/j.matbio.2018.03.009.
pmid: 29530483 |
[23] |
Xu W, Lu M, Xie S, et al. Endoplasmic reticulum stress promotes prostate cancer cells to release exosome and up-regulate PD-L1 expression via PI3K/Akt signaling pathway in macrophages[J]. J Cancer, 2023, 14(6): 1062-1074. DOI: 10.7150/jca.81933.
pmid: 37151385 |
[24] |
Hu K, Shang Z, Yang X, et al. Macrophage polarization and the regulation of bone immunity in bone homeostasis[J]. J Inflamm Res, 2023, 16: 3563-3580. DOI: 10.2147/JIR.S423819.
pmid: 37636272 |
[25] |
Guan H, Peng R, Fang F, et al. Tumor-associated macrophages promote prostate cancer progression via exosome-mediated miR-95 transfer[J]. J Cell Physiol, 2020, 235(12): 9729-9742. DOI: 10.1002/jcp.29784.
pmid: 32406953 |
[26] |
Xu Y, Song G, Xie S, et al. The roles of PD-1/PD-L1 in the prognosis and immunotherapy of prostate cancer[J]. Mol Ther, 2021, 29(6): 1958-1969. DOI: 10.1016/j.ymthe.2021.04.029.
pmid: 33932597 |
[27] | Yin Z, Yu M, Ma T, et al. Mechanisms underlying low-clinical responses to PD-1/PD-L1 blocking antibodies in immunotherapy of cancer: a key role of exosomal PD-L1[J]. J Immunother Cancer, 2021, 9(1): e001698. DOI: 10.1136/jitc-2020-001698. |
[28] | Li D, Zhou X, Xu W, et al. Prostate cancer cells synergistically defend against CD8+ T cells by secreting exosomal PD-L1[J]. Cancer Med, 2023, 12(15): 16405-16415. DOI: 10.1002/cam4.6275. |
[29] |
Poggio M, Hu T, Pai CC, et al. Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory[J]. Cell, 2019, 177(2): 414-427.e13. DOI: 10.1016/j.cell.2019.02.016.
pmid: 30951669 |
[30] |
Vardaki I, Corn P, Gentile E, et al. Radium-223 treatment increases immune checkpoint expression in extracellular vesicles from the metastatic prostate cancer bone microenvironment[J]. Clin Cancer Res, 2021, 27(11): 3253-3264. DOI: 10.1158/1078-0432.CCR-20-4790.
pmid: 33753455 |
[31] | Elaasser B, Arakil N, Mohammad KS. Bridging the gap in understanding bone metastasis: a multifaceted perspective[J]. Int J Mol Sci, 2024, 25(5): 2846. DOI: 10.3390/ijms25052846. |
[32] | Kaplan Z, Zielske SP, Ibrahim KG, et al. Wnt and β-catenin signaling in the bone metastasis of prostate cancer[J]. Life (Basel), 2021, 11(10): 1099. DOI: 10.3390/life11101099. |
[33] |
Zeng F, Zhao C, Wang R, et al. Antagonizing exosomal miR-18a-5p derived from prostate cancer cells ameliorates metastasis-induced osteoblastic lesions by targeting Hist1h2bc and activating Wnt/β-catenin pathway[J]. Genes Dis, 2023, 10(4): 1626-1640. DOI: 10.1016/j.gendis.2022.06.007.
pmid: 37397518 |
[34] | Liu Y, Yang C, Chen S, et al. Cancer-derived exosomal miR-375 targets DIP2C and promotes osteoblastic metastasis and prostate cancer progression by regulating the Wnt signaling pathway[J]. Cancer Gene Ther, 2023, 30(3): 437-449. DOI: 10.1038/s41417-022-00563-1. |
[35] | Jiang T, Xia T, Qiao F, et al. Role and regulation of transcription factors in osteoclastogenesis[J]. Int J Mol Sci, 2023, 24(22): 16175. DOI: 10.3390/ijms242216175. |
[36] |
Mo C, Huang B, Zhuang J, et al. LncRNA nuclear-enriched abundant transcript 1 shuttled by prostate cancer cells-secreted exosomes initiates osteoblastic phenotypes in the bone metastatic microenvironment via miR-205-5p/runt-related transcription factor 2/splicing factor proline- and glutamine-rich/polypyrimidine tract-binding protein 2 axis[J]. Clin Transl Med, 2021, 11(8): e493. DOI: 10.1002/ctm2.493.
pmid: 34459124 |
[37] | Borel M, Lollo G, Magne D, et al. Prostate cancer-derived exosomes promote osteoblast differentiation and activity through phospholipase D2[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866( 12): 165919. DOI: 10.1016/j.bbadis.2020.165919. |
[38] | Roudier MP, Morrissey C, True LD, et al. Histopathological assess-ment of prostate cancer bone osteoblastic metastases[J]. J Urol, 2008, 180(3): 1154-1160. DOI: 10.1016/j.juro.2008.04.140. |
[39] | Satcher RL, Zhang XH. Evolving cancer-niche interactions and therapeutic targets during bone metastasis[J]. Nat Rev Cancer, 2022, 22(2): 85-101. DOI: 10.1038/s41568-021-00406-5. |
[40] | Urabe F, Kosaka N, Yamamoto Y, et al. Metastatic prostate cancer-derived extracellular vesicles facilitate osteoclastogenesis by transferring the CDCP1 protein[J]. J Extracell Vesicles, 2023, 12(3): e12312. DOI: 10.1002/jev2.12312. |
[1] | Liu Bohan, Huang Junxing. Research progress of liquid biopsy technology in esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(2): 105-108. |
[2] | Chen Jie, Xu Hong, Chen Yutian. Role of tumor cell-derived exosomes in the pre-metastatic niche formation in colorectal cancer [J]. Journal of International Oncology, 2024, 51(10): 650-654. |
[3] | Zhang Yuan, Bai Zhiyu, Li Qi, Feng Qinmei. Current status of research on exosomes in malignancies [J]. Journal of International Oncology, 2023, 50(8): 484-488. |
[4] | Jin Ming, Zhen Shuqing, Wang Yanqiao, Shen Hongxia, Zhang Aimin, Hui Limei. Effects of propofol on malignant biological behaviors of prostate cancer DU145 cells and its mechanism [J]. Journal of International Oncology, 2022, 49(8): 453-458. |
[5] | Li Hongyu, Wu Xinlin. Exosomes and liver metastasis of colorectal cancer [J]. Journal of International Oncology, 2022, 49(12): 749-753. |
[6] | Wang Wenhao, Sun Xirui, Liu Jin, Sun Xiumei. Role of cancer-associated fibroblasts in the development and progression of breast cancer [J]. Journal of International Oncology, 2022, 49(10): 615-618. |
[7] | Zhang Wanchen, Xu Jiajie, Zhang Lizhuo, Ge Minghua. Clinical significance of exosomal-circRNA in tumor diagnosis and treatment [J]. Journal of International Oncology, 2021, 48(9): 549-552. |
[8] | Zhang Yongli, Zhang Ruojia, Fan Huancai, Ge Luna, Wang Lin. TXNDC5-Prx2 axis regulates drug resistance of prostate cancer cells [J]. Journal of International Oncology, 2021, 48(8): 473-478. |
[9] | Zhang Jiawei, Wu Jianchen. Application of exosomes in prostates cancer [J]. Journal of International Oncology, 2020, 47(10): 634-636. |
[10] | Song Quan, Ding Ningling, Xu Ying, Cao Kaiyue, Zhou Sufang, Zhao Aiqin, Pan Yunzhi, Ma Sai. Exosomal miR-196a derived from liver cancer stem cell enhances liver cancer cells resistance to doxorubicin [J]. Journal of International Oncology, 2020, 47(10): 585-592. |
[11] | Cao Lixia, Shi Zhendong, Liu Jingjing, Zhang Jin. Clinical application of exosomal miRNA as biomarker in breast cancer [J]. Journal of International Oncology, 2019, 46(7): 423-426. |
[12] | Chen Long, Lin Ling, Wang Cuiying, Wang Lin, He Donglei, Feng Jun. Clinical research of intercalated combination of osimertinib and docetaxel in T790M mutationpositive lung adenocarcinoma patients with bone metastasis in the southern Hainan Province [J]. Journal of International Oncology, 2019, 46(7): 399-403. |
[13] | Zhang Fangyong, Wu Fan. Research progress on exosomederived noncoding RNAs in liquid biopsy of hepatocelluar carcinoma [J]. Journal of International Oncology, 2019, 46(6): 378-381. |
[14] | Dong Haiyan, Pang Xiaoyan, Dou Lei, Li Fengxin, Tian Dongli, Zhang Yi. Role of tumor-derived exosomes in tumor metastasis [J]. Journal of International Oncology, 2018, 45(7): 427-431. |
[15] | Yang Xin, Meng Bin. Roles of exosomes in tumor formation, diagnosis and treatment [J]. Journal of International Oncology, 2018, 45(12): 739-742. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||