Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (12): 749-753.doi: 10.3760/cma.j.cn371439-20220816-00147
• Reviews • Previous Articles Next Articles
Received:
2022-08-16
Revised:
2022-09-26
Online:
2022-12-08
Published:
2023-01-05
Contact:
Wu Xinlin
E-mail:wuxinlin@126.com
Supported by:
Li Hongyu, Wu Xinlin. Exosomes and liver metastasis of colorectal cancer[J]. Journal of International Oncology, 2022, 49(12): 749-753.
[1] |
Wang Y, Ma LY, Yin XP, et al. Radiomics and radiogenomics in evaluation of colorectal cancer liver metastasis[J]. Front Oncol, 2021, 11: 689509. DOI: 10.3389/fonc.2021.689509.
doi: 10.3389/fonc.2021.689509 |
[2] |
Wang D, Wang X, Si M, et al. Exosome-encapsulated miRNAs contribute to CXCL12/CXCR4-induced liver metastasis of colorectal cancer by enhancing M2 polarization of macrophages[J]. Cancer Lett, 2020, 474: 36-52. DOI: 10.1016/j.canlet.2020.01.005.
doi: S0304-3835(20)30013-6 pmid: 31931030 |
[3] |
McFadden NR, Perry LM, Ghalambor TJ, et al. Locoregional liver-directed therapies to treat unresectable colorectal liver metastases: a review[J]. Oncology (Williston Park), 2022, 36(2): 108-114. DOI: 10.46883/2022.25920945.
doi: 10.46883/2022.25920945 |
[4] |
Nabariya DK, Pallu R, Yenuganti VR. Exosomes: the protagonists in the tale of colorectal cancer?[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874(2): 188426. DOI: 10.1016/j.bbcan.2020.188426.
doi: 10.1016/j.bbcan.2020.188426 |
[5] |
Zhang L, Yu D. Exosomes in cancer development, metastasis, and immunity[J]. Biochim Biophys Acta Rev Cancer, 2019, 1871(2): 455-468. DOI: 10.1016/j.bbcan.2019.04.004.
doi: 10.1016/j.bbcan.2019.04.004 |
[6] |
Zhu L, Sun HT, Wang S, et al. Isolation and characterization of exosomes for cancer research[J]. J Hematol Oncol, 2020, 13(1): 152. DOI: 10.1186/s13045-020-00987-y.
doi: 10.1186/s13045-020-00987-y |
[7] |
Takano Y, Masuda T, Iinuma H, et al. Circulating exosomal microRNA-203 is associated with metastasis possibly via inducing tumor-associated macrophages in colorectal cancer[J]. Oncotarget, 2017, 8(45): 78598-78613. DOI: 10.18632/oncotarget.20009.
doi: 10.18632/oncotarget.20009 pmid: 29108252 |
[8] |
Zhao S, Mi Y, Guan B, et al. Correction to: tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer[J]. J Hematol Oncol, 2021, 14(1): 33. DOI: 10.1186/s13045-021-01042-0.
doi: 10.1186/s13045-021-01042-0 |
[9] |
Zhang C, Wang XY, Zhang P, et al. Cancer-derived exosomal HSPC111 promotes colorectal cancer liver metastasis by reprogram-ming lipid metabolism in cancer-associated fibroblasts[J]. Cell Death Dis, 2022, 13(1): 57. DOI: 10.1038/s41419-022-04506-4.
doi: 10.1038/s41419-022-04506-4 |
[10] |
Zeng Z, Li Y, Pan Y, et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis[J]. Nat Commun, 2018, 9(1): 5395. DOI: 10.1038/s41467-018-07810-w.
doi: 10.1038/s41467-018-07810-w pmid: 30568162 |
[11] |
Shao Y, Chen T, Zheng X, et al. Colorectal cancer-derived small extracellular vesicles establish an inflammatory premetastatic niche in liver metastasis[J]. Carcinogenesis, 2018, 39(11): 1368-1379. DOI: 10.1093/carcin/bgy115.
doi: 10.1093/carcin/bgy115 pmid: 30184100 |
[12] |
Sun H, Meng Q, Shi C, et al. Hypoxia-inducible exosomes facili-tate liver-tropic premetastatic niche in colorectal cancer[J]. Hepatology, 2021, 74(5): 2633-2651. DOI: 10.1002/hep.32009.
doi: 10.1002/hep.32009 |
[13] |
Tian F, Wang P, Lin D, et al. Exosome-delivered miR-221/222 exacerbates tumor liver metastasis by targeting SPINT1 in colo-rectal cancer[J]. Cancer Sci, 2021, 112(9): 3744-3755. DOI: 10.1111/cas.15028.
doi: 10.1111/cas.15028 |
[14] |
Meltzer S, Bjørnetrø T, Lyckander LG, et al. Circulating exosomal miR-141-3p and miR-375 in metastatic progression of rectal cancer[J]. Transl Oncol, 2019, 12(8): 1038-1044. DOI: 10.1016/j.tranon.2019.04.014.
doi: S1936-5233(19)30091-9 pmid: 31146167 |
[15] |
Tsukamoto M, Iinuma H, Yagi T, et al. Circulating exosomal microRNA-21 as a biomarker in each tumor stage of colorectal cancer[J]. Oncology, 2017, 92(6): 360-370. DOI: 10.1159/000463387.
doi: 10.1159/000463387 pmid: 28376502 |
[16] |
Monzo M, Santasusagna S, Moreno I, et al. Exosomal microRNAs isolated from plasma of mesenteric veins linked to liver metastases in resected patients with colon cancer[J]. Oncotarget, 2017, 8(19): 30859-30869. DOI: 10.18632/oncotarget.16103.
doi: 10.18632/oncotarget.16103 pmid: 28415718 |
[17] |
Liu D, Chen C, Cui M, et al. miR-140-3p inhibits colorectal cancer progression and its liver metastasis by targeting BCL9 and BCL2[J]. Cancer Med, 2021, 10(10): 3358-3372. DOI: 10.1002/cam4.3840.
doi: 10.1002/cam4.3840 |
[18] |
Yan S, Jiang Y, Liang C, et al. Exosomal miR-6803-5p as poten-tial diagnostic and prognostic marker in colorectal cancer[J]. J Cell Biochem, 2018, 119(5): 4113-4119. DOI: 10.1002/jcb.26609.
doi: 10.1002/jcb.26609 |
[19] |
Peng ZY, Gu RH, Yan B. Downregulation of exosome-encapsulated miR-548c-5p is associated with poor prognosis in colorectal cancer[J]. J Cell Biochem, 2018, 120(2): 1457-1463. DOI: 10.1002/jcb.27291.
doi: 10.1002/jcb.27291 |
[20] |
Yan S, Han B, Gao S, et al. Exosome-encapsulated microRNAs as circulating biomarkers for colorectal cancer[J]. Oncotarget, 2017, 8(36): 60149-60158. DOI: 10.18632/oncotarget.18557.
doi: 10.18632/oncotarget.18557 pmid: 28947960 |
[21] |
Sun L, Liu X, Pan B, et al. Serum exosomal miR-122 as a potential diagnostic and prognostic biomarker of colorectal cancer with liver metastasis[J]. J Cancer, 2020, 11(3): 630-637. DOI: 10.7150/jca.33022.
doi: 10.7150/jca.33022 pmid: 31942186 |
[22] |
Teng Y, Ren Y, Hu X, et al. MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression[J]. Nat Commun, 2017, 8: 14448. DOI: 10.1038/ncomms14448.
doi: 10.1038/ncomms14448 pmid: 28211508 |
[23] |
Jiang K, Chen H, Fang Y, et al. Exosomal ANGPTL1 attenuates colorectal cancer liver metastasis by regulating Kupffer cell secretion pattern and impeding MMP9 induced vascular leakiness[J]. J Exp Clin Cancer Res, 2021, 40(1): 21. DOI: 10.1186/s13046-020-01816-3.
doi: 10.1186/s13046-020-01816-3 |
[24] |
Xu J, Xiao Y, Liu B, et al. Exosomal MALAT1 sponges miR-26a/26b to promote the invasion and metastasis of colorectal cancer via FUT4 enhanced fucosylation and PI3K/Akt pathway[J]. J Exp Clin Cancer Res, 2020, 39(1): 54. DOI: 10.1186/s13046-020-01562-6.
doi: 10.1186/s13046-020-01562-6 |
[25] |
Wang X, Ding X, Nan L, et al. Investigation of the roles of exo-somes in colorectal cancer liver metastasis[J]. Oncol Rep, 2015, 33(5): 2445-2453. DOI: 10.3892/or.2015.3843.
doi: 10.3892/or.2015.3843 pmid: 25760247 |
[26] |
Ma J, Liang W, Qiang Y, et al. Interleukin-1 receptor antagonist inhibits matastatic potential by down-regulating CXCL12/CXCR4 signaling axis in colorectal cancer[J]. Cell Commun Signal, 2021, 19(1): 122. DOI: 10.1186/s12964-021-00804-0.
doi: 10.1186/s12964-021-00804-0 pmid: 34930323 |
[27] |
Guo S, Chen J, Chen F, et al. Exosomes derived from Fusobacterium nucleatum-infected colorectal cancer cells facilitate tumour metastasis by selectively carrying miR-1246/92b-3p/27a-3p and CXCL16[J]. Gut, 2020, 70: 1507-1519. DOI: 10.1136/gutjnl-2020-321187.
doi: 10.1136/gutjnl-2020-321187 |
[28] |
Sun J, Lu Z, Fu W, et al. Exosome-derived ADAM17 promotes liver metastasis in colorectal cancer[J]. Front Pharmacol, 2021, 12: 734351. DOI: 10.3389/fphar.2021.734351.
doi: 10.3389/fphar.2021.734351 |
[29] |
Zhang X, Bai J, Yin H, et al. Exosomal miR-1255b-5p targets human telomerase reverse transcriptase in colorectal cancer cells to suppress epithelial-to-mesenchymal transition[J]. Mol Oncol, 2020, 14(10): 2589-2608. DOI: 10.1002/1878-0261.12765.
doi: 10.1002/1878-0261.12765 |
[30] |
You YN, Hardiman KM, Bafford A, et al. The American Society of colon and rectal surgeons clinical practice guidelines for the management of rectal cancer[J]. Dis Colon Rectum, 2020, 63(9): 1191-1222. DOI: 10.1097/DCR.0000000000001762.
doi: 10.1097/DCR.0000000000001762 pmid: 33216491 |
[31] |
Hashiguchi Y, Muro K, Saito Y, et al. Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2019 for the treatment of colorectal cancer[J]. Int J Clin Oncol, 2020, 25(1): 1-42. DOI: 10.1007/s10147-019-01485-z.
doi: 10.1007/s10147-019-01485-z pmid: 31203527 |
[32] |
Hu JL, Wang W, Lan XL, et al. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer[J]. Mol Cancer, 2019, 18(1): 91. DOI: 10.1186/s12943-019-1019-x.
doi: 10.1186/s12943-019-1019-x pmid: 31064356 |
[33] |
Zhao K, Cheng X, Ye Z, et al. Exosome-mediated transfer of circ_0000338 enhances 5-fluorouracil resistance in colorectal cancer through regulating microRNA 217 (miR-217) and miR-485-3p[J]. Mol Cell Biol, 2021, 41(5): e00517-e00520. DOI: 10.1128/MCB.00517-20.
doi: 10.1128/MCB.00517-20 |
[34] |
Ning T, Li J, He Y, et al. Exosomal miR-208b related with oxaliplatin resistance promotes Treg expansion in colorectal cancer[J]. Mol Ther, 2021, 29(9): 2723-2736. DOI: 10.1016/j.ymthe.2021.04.028.
doi: 10.1016/j.ymthe.2021.04.028 pmid: 33905821 |
[35] |
Li F, Zhan L, Dong Q, et al. Tumor-derived exosome-educated hepatic stellate cells regulate lactate metabolism of hypoxic colorectal tumor cells via the IL-6/STAT3 pathway to confer drug resistance[J]. Onco Targets Ther, 2020, 13: 7851-7864. DOI: 10.2147/OTT.S253485.
doi: 10.2147/OTT.S253485 |
[36] |
Chibani H, El Bairi K, Al Jarroudi O, et al. Bevacizumab in meta-static colorectal cancer in a real-life setting-toxicity profile, survival outcomes, and impact of tumor sidedness[J]. Contemp Oncol (Pozn), 2022, 26(1): 32-39. DOI: 10.5114/wo.2022.114678.
doi: 10.5114/wo.2022.114678 |
[37] |
Tang W, Ren L, Liu T, et al. Bevacizumab plus mFOLFOX6 versus mFOLFOX6 alone as first-line treatment for RAS mutant unresectable colorectal liver-limited metastases: the BECOME randomized controlled trial[J]. J Clin Oncol, 2020, 38(27): 3175-3184. DOI: 10.1200/JCO.20.00174.
doi: 10.1200/JCO.20.00174 |
[38] |
Huang W, Zhang H, Tian Y, et al. LncRNA SNHG11 enhances bevacizumab resistance in colorectal cancer by mediating miR-1207-5p/ABCC1 axis[J]. Anticancer Drugs, 2022, 33(6): 575-586. DOI: 10.1097/CAD.0000000000001289.
doi: 10.1097/CAD.0000000000001289 pmid: 35324517 |
[39] |
Hu H, Wang K, Huang M, et al. Modified FOLFOXIRI with or without cetuximab as conversion therapy in patients with RAS/BRAF wild-type unresectable liver metastases colorectal cancer: the FOCULM multicenter phase Ⅱ trial[J]. Oncologist, 2021, 26(1): e90-e98. DOI: 10.1634/theoncologist.2020-0563.
doi: 10.1634/theoncologist.2020-0563 |
[40] |
Sobrero A, Lenz HJ, Eng C, et al. Extended RAS analysis of the phase Ⅲ EPIC trial: irinotecan + cetuximab versus irinotecan as second-line treatment for patients with metastatic colorectal cancer[J]. Oncologist, 2021, 26(2): e261-e269. DOI: 10.1002/onco.13591.
doi: 10.1002/onco.13591 |
[41] |
Zhang S, Zhang Y, Qu J, et al. Exosomes promote cetuximab resistance via the PTEN/Akt pathway in colon cancer cells[J]. Braz J Med Biol Res, 2017, 51(1): e6472. DOI: 10.1590/1414-431X20176472.
doi: 10.1590/1414-431X20176472 |
[1] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[2] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[3] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[4] | Liu Bohan, Huang Junxing. Research progress of liquid biopsy technology in esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(2): 105-108. |
[5] | Sun Guobao, Yang Qian, Zhuang Qingchun, Gao Binbin, Sun Xiaogang, Song Wei, Sha Dan. Research progress on the histopathological growth patterns of colorectal liver metastasis [J]. Journal of International Oncology, 2024, 51(2): 114-118. |
[6] | Liu Debao, Sun Ziwen, Lu Shoutang, Xu Haidong. Expression and clinical significance of ASB6 in colorectal cancer tissues [J]. Journal of International Oncology, 2023, 50(8): 470-474. |
[7] | Zhang Yuan, Bai Zhiyu, Li Qi, Feng Qinmei. Current status of research on exosomes in malignancies [J]. Journal of International Oncology, 2023, 50(8): 484-488. |
[8] | Chen Zhuo, Tao Jun, Chen Lin, Ke Jing. Value of detection of peripheral blood miR-194 combined with fecal miR-143 in the clinical screening of colorectal cancer [J]. Journal of International Oncology, 2023, 50(5): 268-273. |
[9] | Huang Zhen, Zhang Caiyutian, Ke Shaobo, Shi Wei, Zhao Wensi, Chen Yongshun. Construction of postoperative prognosis model for patients with colorectal cancer [J]. Journal of International Oncology, 2023, 50(3): 157-163. |
[10] | Xu Liangfu, Li Yuanfei. Research progress on tumor microenvironment and immune combination therapy of MSS colorectal cancer [J]. Journal of International Oncology, 2023, 50(3): 186-190. |
[11] | Liu Yujie, Zhao Zhiqiang, Wang Zicheng. Levels and diagnostic value of TOP2A and ERBB2 in peripheral blood mononuclear cells of patients with early colorectal cancer [J]. Journal of International Oncology, 2023, 50(12): 717-722. |
[12] | Tao Hong, Yin Hong, Luo Hong, Tao Jiayu. Potential strategies for targeting tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors for colorectal cancer [J]. Journal of International Oncology, 2023, 50(11): 683-687. |
[13] | Wang Xi, Wu Chuanqing. Research progress in reversing multidrug resistance in colorectal cancer [J]. Journal of International Oncology, 2023, 50(1): 42-46. |
[14] | Gao Yizhao, Liu Yang, Liu Qiulong, Xing Jinliang. Application of circulating cell-free nucleic acid in clinical diagnosis and treatment of colorectal cancer [J]. Journal of International Oncology, 2022, 49(9): 555-559. |
[15] | He Zhefeng, Wu Yiyang, Li Zhenjun, Ying Xiaojiang. Predictive value of inflammatory markers in colorectal cancer [J]. Journal of International Oncology, 2022, 49(9): 560-563. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||