Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (1): 55-59.doi: 10.3760/cma.j.cn371439-20220520-00011
• Reviews • Previous Articles Next Articles
Zhao Jianhao1,2, Duan Yanchao1()
Received:
2022-05-20
Revised:
2022-09-12
Online:
2023-01-08
Published:
2023-03-16
Contact:
Duan Yanchao
E-mail:duanyanchao2000@163.com
Supported by:
Zhao Jianhao, Duan Yanchao. Research progress in the pathogenesis of extramedullary disease in multiple myeloma[J]. Journal of International Oncology, 2023, 50(1): 55-59.
[1] |
庄俊玲. 多发性骨髓瘤髓外病变诊治进展[J]. 临床血液学杂志, 2019, 32(7): 499-503. DOI: 10.13201/j.issn.1004-2806.2019.07.003.
doi: 10.13201/j.issn.1004-2806.2019.07.003 |
[2] |
Moser-Katz T, Joseph NS, Dhodapkar MV, et al. Game of bones: how myeloma manipulates its microenvironment[J]. Front Oncol, 2021, 10: 625199. DOI: 10.3389/fonc.2020.625199.
doi: 10.3389/fonc.2020.625199 |
[3] |
Klimienė I, Radzevičius M, Matuzevičienė R, et al. Adhesion mo-lecule immunophenotype of bone marrow multiple myeloma plasma cells impacts the presence of malignant circulating plasma cells in peripheral blood[J]. Int J Lab Hematol, 2021, 43(3): 403-408. DOI: 10.1111/ijlh.13387.
doi: 10.1111/ijlh.13387 pmid: 33185981 |
[4] |
Katz BZ. Adhesion molecules—the lifelines of multiple myeloma cells[J]. Semin Cancer Biol, 2010, 20(3): 186-195. DOI: 10.1016/j.semcancer.2010.04.003.
doi: 10.1016/j.semcancer.2010.04.003 |
[5] |
Hathi D, Chanswangphuwana C, Cho N, et al. Ablation of VLA4 in multiple myeloma cells redirects tumor spread and prolongs survival[J]. Sci Rep, 2022, 12(1): 30. DOI: 10.1038/s41598-021-03748-0.
doi: 10.1038/s41598-021-03748-0 pmid: 34996933 |
[6] |
Li J, Pan Q, Rowan PD, et al. Heparanase promotes myeloma progression by inducing mesenchymal features and motility of myeloma cells[J]. Oncotarget, 2016, 7(10): 11299-11309. DOI: 10.18632/oncotarget.7170.
doi: 10.18632/oncotarget.7170 pmid: 26849235 |
[7] |
Jung O, Trapp-Stamborski V, Purushothaman A, et al. Heparanase-induced shedding of syndecan-1/CD138 in myeloma and endothelial cells activates VEGFR2 and an invasive phenotype: prevention by novel synstatins[J]. Oncogenesis, 2016, 5(2): e202. DOI: 10.1038/oncsis.2016.5.
doi: 10.1038/oncsis.2016.5 |
[8] |
Akhmetzyanova I, McCarron MJ, Parekh S, et al. Dynamic CD138 surface expression regulates switch between myeloma growth and dissemination[J]. Leukemia, 2020, 34(1): 245-256. DOI: 10.1038/s41375-019-0519-4.
doi: 10.1038/s41375-019-0519-4 pmid: 31439945 |
[9] |
Harshman SW, Canella A, Ciarlariello PD, et al. Proteomic characterization of circulating extracellular vesicles identifies novel serum myeloma associated markers[J]. J Proteomics, 2016, 136: 89-98. DOI: 10.1016/j.jprot.2015.12.016.
doi: 10.1016/j.jprot.2015.12.016 pmid: 26775013 |
[10] |
Janjetovic S, Lohneis P, Nogai A, et al. Clinical and biological characteristics of medullary and extramedullary plasma cell dyscrasias[J]. Biology (Basel), 2021, 10(7): 629. DOI: 10.3390/biology 10070629.
doi: 10.3390/biology 10070629 |
[11] |
Pan Y, Wang H, Tao Q, et al. Absence of both CD56 and CD117 expression on malignant plasma cells is related with a poor prognosis in patients with newly diagnosed multiple myeloma[J]. Leuk Res, 2016, 40: 77-82. DOI: 10.1016/j.leukres.2015.11.003.
doi: 10.1016/j.leukres.2015.11.003 |
[12] |
Geng S, Wang J, Zhang X, et al. Single-cell RNA sequencing reveals chemokine self-feeding of myeloma cells promotes extramedullary metastasis[J]. FEBS Lett, 2020, 594(3): 452-465. DOI: 10.1002/1873-3468.13623.
doi: 10.1002/1873-3468.13623 pmid: 31561267 |
[13] |
Vandyke K, Zeissig MN, Hewett DR, et al. HIF-2α promotes dissemination of plasma cells in multiple myeloma by regulating CXCL12/CXCR4 and CCR1[J]. Cancer Res, 2017, 77(20): 5452-5463. DOI: 10.1158/0008-5472.CAN-17-0115.
doi: 10.1158/0008-5472.CAN-17-0115 pmid: 28855206 |
[14] |
Zeissig MN, Hewett DR, Panagopoulos V, et al. Expression of the chemokine receptor CCR1 promotes the dissemination of multiple myeloma plasma cells in vivo[J]. Haematologica, 2021, 106(12): 3176-3187. DOI: 10.3324/haematol.2020.253526.
doi: 10.3324/haematol.2020.253526 |
[15] |
Peng Y, Li F, Zhang P, et al. IGF-1 promotes multiple myeloma progression through PI3K/Akt-mediated epithelial-mesenchymal transition[J]. Life Sci, 2020, 249: 117503. DOI: 10.1016/j.lfs.2020.117503.
doi: 10.1016/j.lfs.2020.117503 |
[16] |
Akhmetzyanova I, Aaron T, Galbo P, et al. Tissue-resident macrophages promote early dissemination of multiple myeloma via IL-6 and TNFα[J]. Blood Adv, 2021, 5(18): 3592-3608. DOI: 10.1182/bloodadvances.2021005327.
doi: 10.1182/bloodadvances.2021005327 pmid: 34550328 |
[17] |
Xu J, Yu N, Zhao P, et al. Intratumor heterogeneity of MIF expression correlates with extramedullary involvement of multiple myeloma[J]. Front Oncol, 2021, 11: 694331. DOI: 10.3389/fonc.2021.694331.
doi: 10.3389/fonc.2021.694331 |
[18] |
Yang Q, Shen X, Su Z, et al. Emerging roles of noncoding RNAs in multiple myeloma: a review[J]. J Cell Physiol, 2019, 234(6): 7957-7969. DOI: 10.1002/jcp.27547.
doi: 10.1002/jcp.27547 pmid: 30370557 |
[19] |
Chen H, Zhao Y, Zhang J, et al. Promoting effects of miR-135b on human multiple myeloma cells via regulation of the Wnt/ β-catenin/Versican signaling pathway[J]. Cytokine, 2021, 142: 155495. DOI: 10.1016/j.cyto.2021.155495.
doi: 10.1016/j.cyto.2021.155495 |
[20] |
Sewastianik T, Straubhaar JR, Zhao JJ, et al. MiR-15a/16-1 deletion in activated B cells promotes plasma cell and mature B-cell neoplasms[J]. Blood, 2021, 137(14): 1905-1919. DOI: 10.1182/blood.2020009088.
doi: 10.1182/blood.2020009088 |
[21] |
Xu A, Zhang J, Zuo L, et al. FTO promotes multiple myeloma progression by posttranscriptional activation of HSF1 in an m6A-YTHDF2-dependent manner[J]. Mol Ther, 2022, 30(3): 1104-1118. DOI: 10.1016/j.ymthe.2021.12.012.
doi: 10.1016/j.ymthe.2021.12.012 |
[22] |
Pang M, Li C, Zheng D, et al. S1PR2 knockdown promotes migration and invasion in multiple myeloma cells via NF-κB activation[J]. Cancer Manag Res, 2020, 12: 7857-7865. DOI: 10.2147/CMAR.S237330.
doi: 10.2147/CMAR.S237330 pmid: 32922084 |
[23] |
孙睿婕, 单宁宁. 复发难治性多发性骨髓瘤的免疫靶向治疗及存在的问题[J]. 国际肿瘤学杂志, 2021, 48(6): 381-384. DOI: 10.3760/cma.j.cn371439-20200622-00074.
doi: 10.3760/cma.j.cn371439-20200622-00074 |
[24] |
Mina R, D'Agostino M, Cerrato C, et al. Plasma cell leukemia: update on biology and therapy[J]. Leuk Lymphoma, 2017, 58(7): 1538-1547. DOI: 10.1080/10428194.2016.1250263.
doi: 10.1080/10428194.2016.1250263 |
[25] |
Besse L, Sedlarikova L, Greslikova H, et al. Cytogenetics in multiple myeloma patients progressing into extramedullary disease[J]. Eur J Haematol, 2016, 97(1): 93-100. DOI: 10.1111/ejh.12688.
doi: 10.1111/ejh.12688 pmid: 26432667 |
[26] |
Cheong CM, Mrozik KM, Hewett DR, et al. Twist-1 is upregulated by NSD2 and contributes to tumour dissemination and an epithelial-mesenchymal transition-like gene expression signature in t(4;14)-positive multiple myeloma[J]. Cancer Lett, 2020, 475: 99-108. DOI: 10.1016/j.canlet.2020.01.040.
doi: S0304-3835(20)30054-9 pmid: 32014459 |
[27] |
Zeissig MN, Zannettino ACW, Vandyke K. Tumour dissemination in multiple myeloma disease progression and relapse: a potential therapeutic target in high-risk myeloma[J]. Cancers (Basel), 2020, 12(12): 3643. DOI: 10.3390/cancers12123643.
doi: 10.3390/cancers12123643 |
[28] |
Kriegova E, Fillerova R, Minarik J, et al. Whole-genome optical mapping of bone-marrow myeloma cells reveals association of extramedullary multiple myeloma with chromosome 1 abnormalities[J]. Sci Rep, 2021, 11(1): 14671. DOI: 10.1038/s41598-021-93835-z.
doi: 10.1038/s41598-021-93835-z pmid: 34282158 |
[29] |
Farre L, Sanz G, Ruiz-Xivillé N, et al. Extramedullary multiple myeloma patient-derived orthotopic xenograft with a highly altered genome: combined molecular and therapeutic studies[J]. Dis Model Mech, 2021, 14(7): dmm048223. DOI: 10.1242/dmm.048223.
doi: 10.1242/dmm.048223 |
[30] |
Yue Z, Zhou Y, Zhao P, et al. p53 deletion promotes myeloma cells invasion by upregulating miR19a/CXCR5[J]. Leuk Res, 2017, 60: 115-122. DOI: 10.1016/j.leukres.2017.07.003.
doi: 10.1016/j.leukres.2017.07.003 |
[31] |
Liu Y, Jelloul F, Zhang Y, et al. Genetic basis of extramedullary plasmablastic transformation of multiple myeloma[J]. Am J Surg Pathol, 2020, 44(6): 838-848. DOI: 10.1097/PAS.0000000000001459.
doi: 10.1097/PAS.0000000000001459 pmid: 32118627 |
[32] |
Wen Z, Rajagopalan A, Flietner ED, et al. Expression of NrasQ61R and MYC transgene in germinal center B cells induces a highly malignant multiple myeloma in mice[J]. Blood, 2021, 137(1): 61-74. DOI: 10.1182/blood.2020007156.
doi: 10.1182/blood.2020007156 |
[33] |
Cui YS, Song YP, Fang BJ. The role of long non-coding RNAs in multiple myeloma[J]. Eur J Haematol, 2019, 103(1): 3-9. DOI: 10.1111/ejh.13237.
doi: 10.1111/ejh.13237 |
[34] |
Xu K, Hu X, Sun L, et al. MicroRNA-532 exerts oncogenic functions in t(4;14) multiple myeloma by targeting CAMK2N1[J]. Hum Cell, 2019, 32(4): 529-539. DOI: 10.1007/s13577-019-00276-y.
doi: 10.1007/s13577-019-00276-y pmid: 31452083 |
[35] |
Berenstein R, Nogai A, Waechter M, et al. Multiple myeloma cells modify VEGF/IL-6 levels and osteogenic potential of bone marrow stromal cells via Notch/miR-223[J]. Mol Carcinog, 2016, 55(12): 1927-1939. DOI: 10.1002/mc.22440.
doi: 10.1002/mc.22440 |
[36] |
Handa H, Kuroda Y, Kimura K, et al. Long non-coding RNA MALAT1 is an inducible stress response gene associated with extramedullary spread and poor prognosis of multiple myeloma[J]. Br J Haematol, 2017, 179(3): 449-460. DOI: 10.1111/bjh.14882.
doi: 10.1111/bjh.14882 |
[37] |
Liu N, Feng S, Li H, et al. Long non-coding RNA MALAT1 facilitates the tumorigenesis, invasion and glycolysis of multiple myeloma via miR-1271-5p/SOX13 axis[J]. J Cancer Res Clin Oncol, 2020, 146(2): 367-379. DOI: 10.1007/s00432-020-03127-8.
doi: 10.1007/s00432-020-03127-8 pmid: 31953613 |
[1] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[2] | Ren Lu, Xie Xiaoli, Zhang Kun, Wang Lijuan. Effects and mechanisms of dihydroartemisinin combined with carfilzomib on the activity, proliferation, and apoptosis of multiple myeloma cells [J]. Journal of International Oncology, 2024, 51(3): 129-136. |
[3] | Li Shuyue, Ma Chenying, Zhou Juying, Xu Xiaoting, Qin Songbing. Progress of radiotherapy in oligometastatic non-small cell lung cancer [J]. Journal of International Oncology, 2024, 51(3): 170-174. |
[4] | Sun Guobao, Yang Qian, Zhuang Qingchun, Gao Binbin, Sun Xiaogang, Song Wei, Sha Dan. Research progress on the histopathological growth patterns of colorectal liver metastasis [J]. Journal of International Oncology, 2024, 51(2): 114-118. |
[5] | Zhang Lu, Jiang Hua, Lin Zhou, Ma Chenying, Xu Xiaoting, Wang Lili, Zhou Juying. Analysis of curative effect and prognosis of immune checkpoint inhibitor in the treatment of recurrent and metastatic cervical cancer [J]. Journal of International Oncology, 2023, 50(8): 475-483. |
[6] | Yang Lirong, Wang Yufeng. Construction of machine learning models for predicting the risk of postoperative distant metastasis recurrence in serous ovarian cancer [J]. Journal of International Oncology, 2023, 50(4): 220-226. |
[7] | Ma Peihan, Zhang Lingming, Lu Ning, Zhang Mingxin. Effect of anesthesia on the recurrence and metastasis of hepatocellular carcinoma [J]. Journal of International Oncology, 2023, 50(2): 117-121. |
[8] | Zhang Yuxiao, Zhang Liansheng, Li Lijuan. Research status and application prospect of a novel immune checkpoint TIGIT in the immunotherapy of multiple myeloma [J]. Journal of International Oncology, 2023, 50(2): 122-125. |
[9] | Zhang Lu, Zhou Juying, Ma Chenying, Lin Zhou. Advances in immunotherapy for recurrent and metastatic cervical cancer [J]. Journal of International Oncology, 2022, 49(9): 517-520. |
[10] | Peng Chen, Xie Yintong, Zhang Xin, Xie Peng. Research progress of maintenance therapy for cervical cancer [J]. Journal of International Oncology, 2022, 49(7): 430-435. |
[11] | Gao Shan, Lu Minqiu, Shi Lei, Chu Bin, Fang Lijuan, Xiang Qiuqing, Wang Yutong, Ding Yuehua, Bao Li. Clinical efficacy and safety of ixazomib-based therapy in the treatment of relapsed or refractory multiple myeloma [J]. Journal of International Oncology, 2022, 49(5): 286-291. |
[12] | Wang Bin, Zhou Jiangyun, Liu Xi. Analysis of the clinical value of different radiotherapy schemes in patients with advanced esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2021, 48(8): 484-488. |
[13] | Jiang Mengting, Wang Jiachun, Zong Jing. Effects of NFAT5 inhibition on proliferation, invasion, migration and apoptosis of lung adenocarcinoma cells [J]. Journal of International Oncology, 2021, 48(6): 321-327. |
[14] | Wang Ziyi, Chen Hongjie, Yang Ninggang, Zhang Jun, Zhang Xiangjun, Yu Xinning, Ma Zhongyi, Dai Enlai. Effects of decorin on proliferation, migration and invasion of bladder cancer cells [J]. Journal of International Oncology, 2021, 48(6): 335-340. |
[15] | Sun Ruijie, Shan Ningning. Immune, targeted therapy and related issues of relapsed/refractory multiple myeloma [J]. Journal of International Oncology, 2021, 48(6): 381-384. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||