[1] |
Kuhn E, Morbini P, Cancellieri A, et al. Adenocarcinoma classification: patterns and prognosis[J]. Pathologica, 2018,110(1):5-11.
pmid: 30259909
|
[2] |
Remo A, Simeone I, Pancione M, et al. Systems biology analysis reveals NFAT5 as a novel biomarker and master regulator of inflammatory breast cancer[J]. J Transl Med, 2015,13:138. DOI: 10.1186/s12967-015-0492-2.
doi: 10.1186/s12967-015-0492-2
|
[3] |
Zhang S, Liao K, Miao Z, et al. CircFOXO3 promotes glioblastoma progression by acting as a competing endogenous RNA for NFAT5[J]. Neuro Oncol, 2019,21(10):1284-1296. DOI: 10.1093/neuonc/noz128.
doi: 10.1093/neuonc/noz128
|
[4] |
Kim DH, Kim KS, Ramakrishna S. NFAT5 promotes in vivo development of murine melanoma metastasis[J]. Biochem Biophys Res Commun, 2018,505(3):748-754. DOI: 10.1016/j.bbrc.2018.09.171.
doi: 10.1016/j.bbrc.2018.09.171
|
[5] |
Liu M, Zhou K, Huang Y, et al. The candidate oncogene (MCRS1) promotes the growth of human lung cancer cells via the miR-155-Rb1 pathway[J]. J Exp Clin Cancer Res, 2015,34:121. DOI: 10.1186/s13046-015-0235-5.
doi: 10.1186/s13046-015-0235-5
|
[6] |
Yu M, Chen Y, Li X, et al. YAP1 contributes to NSCLC invasion and migration by promoting Slug transcription via the transcription co-factor TEAD[J]. Cell Death Dis, 2018,9(5):464. DOI: 10.1038/s41419-018-0515-z.
doi: 10.1038/s41419-018-0515-z
|
[7] |
Li D, Fan S, Yu F, et al. FOXD1 promotes cell growth and metastasis by activation of vimentin in NSCLC[J]. Cell Physiol Biochem, 2018,51(6):2716-2731. DOI: 10.1159/000495962.
doi: 10.1159/000495962
|
[8] |
Vaeth M, Feske S. NFAT control of immune function: new frontiers for an abiding trooper[J]. F1000Res, 2018,7:260. DOI: 10.12688/f1000research.13426.1.
doi: 10.12688/f1000research
|
[9] |
Jiang Y, He R, Jiang Y, et al. Transcription factor NFAT5 contri-butes to the glycolytic phenotype rewiring and pancreatic cancer progression via transcription of PGK1[J]. Cell Death Dis, 2019,10(12):948. DOI: 10.1038/s41419-019-2072-5.
doi: 10.1038/s41419-019-2072-5
|
[10] |
Qin X, Wang Y, Li J, et al. NFAT5 inhibits invasion and promotes apoptosis in hepatocellular carcinoma associated with osmolality[J]. Neoplasma, 2017,64(4):502-510. DOI: 10.4149/neo_2017_403.
doi: 10.4149/neo_2017_403
pmid: 28485155
|
[11] |
Meng X, Li Z, Zhou S, et al. miR-194 suppresses high glucose-induced non-small cell lung cancer cell progression by targeting NFAT5[J]. Thorac Cancer, 2019,10(5):1051-1059. DOI: 10.1111/1759-7714.13038.
doi: 10.1111/tca.2019.10.issue-5
|
[12] |
Cho HJ, Yun HJ, Yang HC, et al. Prognostic significance of nuclear factor of activated T-cells 5 expression in non-small cell lung cancer patients who underwent surgical resection[J]. J Surg Res, 2018,226:40-47. DOI: 10.1016/j.jss.2017.12.036.
doi: 10.1016/j.jss.2017.12.036
|
[13] |
Cicenas J, Zalyte E, Rimkus A, et al. JNK, p38, ERK, and SGK1 inhibitors in cancer[J]. Cancers (Basel), 2017,10(1):1. DOI: 10.3390/cancers10010001.
doi: 10.3390/cancers10010001
|
[14] |
Wang Y, Zhang X, Gao L, et al. Cortistatin exerts antiproliferation and antimigration effects in vascular smooth muscle cells stimulated by Ang Ⅱ through suppressing ERK1/2, p38MAPK, JNK and ERK5 signaling pathways[J]. Ann Transl Med, 2019,7(20):561. DOI: 10.21037/atm.2019.09.45.
doi: 10.21037/atm
|
[15] |
郭雄飞, 王挺, 汤立新 . miR-29a对类风湿关节炎成纤维样滑膜细胞增殖和凋亡的影响[J]. 基础医学与临床, 2020,40(1):9-15.
|
[16] |
Küper C, Beck FX, Neuhofer W. NFAT5-mediated expression of S100A4 contributes to proliferation and migration of renal carcinoma cells[J]. Front Physiol, 2014,5:293. DOI: 10.3389/fphys.2014.00293.
|