Journal of International Oncology ›› 2019, Vol. 46 ›› Issue (4): 239-242.doi: 10.3760/cma.j.issn.1673-422X.2019.04.010
Previous Articles Next Articles
Wang Zhao, Wang Yingnan, Ni Jixiang, Zhu Jing
Received:
2018-11-14
Revised:
2018-12-22
Online:
2019-04-08
Published:
2019-05-29
Contact:
Wang Yingnan, Email: ycwyn@163.com
E-mail:ycwyn@163.com
Wang Zhao, Wang Yingnan, Ni Jixiang, Zhu Jing. Expression and role of Hippo signaling pathway in non-small cell lung cancer[J]. Journal of International Oncology, 2019, 46(4): 239-242.
[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492. [2] Torre LA, Siegel RL, Jemal A. Lung cancer statistics[J]. Adv Exp Med Biol, 2016, 893: 1-19. DOI: 10.1007/978-3-319-242231_1. [3] Pedersen JH, Ashraf H. Implementation and organization of lung cancer screening[J]. Ann Transl Med, 2016, 4(8): 152. DOI: 10.21037/atm.2016.03.59. [4] Moroishi T, Hansen CG, Guan KL. The emerging roles of YAP and TAZ in cancer[J]. Nat Rev Cancer, 2015, 15(2): 73-79. DOI: 10.1038/nrc3876. [5] Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of cancer[J]. Cancer Cell, 2016, 29(6): 783-803. DOI: 10.1016/j.ccell.2016.05.005. [6] Panciera T, Azzolin L, Cordenonsi M, et al. Mechanobiology of YAP and TAZ in physiology and disease[J]. Nat Rev Mol Cell Biol, 2017, 18(12): 758-770. DOI: 10.1038/nrm.2017.87. [7] Meng Z, Moroishi T, Guan KL. Mechanisms of Hippo pathway regulation[J]. Genes Dev, 2016, 30(1): 1-17. DOI: 10.1101/gad.274027.115. [8] Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: hippo signaling and beyond[J]. Physiol Rev, 2014, 94(4): 1287-1312. DOI: 10.1152/physrev.00005.2014. [9] Chen Q, Zhang N, Xie R, et al. Homeostatic control of Hippo signaling activity revealed by an endogenous activating mutation in YAP[J]. Genes Dev, 2015, 29(12): 1285-1297. DOI: 10.1101/gad.264234.115. [10] Meng Z, Moroishi T, MottierPavie V, et al. MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway[J]. Nat Commun, 2015, 6: 8357. DOI: 10.1038/ncomms9357. [11] Oudhoff MJ, Freeman SA, Couzens AL, et al. Control of the hippo pathway by Set7-dependent methylation of Yap[J]. Dev Cell, 2013, 26(2): 188-194. DOI: 10.1016/j.devcel.2013.05.025. [12] Kohli P, Bartram MP, Habbig S, et al. Label-free quantitative proteomic analysis of the YAP/TAZ interactome[J]. Am J Physiol Cell Physiol, 2014, 306(9): C805-C818. DOI: 10.1152/ajpcell.00339.2013. [13] Hansen CG, Moroishi T, Guan KL. YAP and TAZ: a nexus for Hippo signaling and beyond[J]. Trends Cell Biol, 2015, 25(9): 499-513. DOI: 10.1016/j.tcb.2015.05.002. [14] Dai Y, Jablons D, You L. Hippo pathway in lung development[J]. J Thorac Dis, 2017, 9(8): 2246-2250. DOI: 10.21037/jtd.2017.07.18. [15] Elbediwy A, Vincent-Mistiaen ZI, Spencer-Dene B, et al. Integrin signalling regulates YAP and TAZ to control skin homeostasis[J]. Development, 2016, 143(10): 1674-1687. DOI: 10.1242/dev.133728. [16] Szymaniak AD, Mahoney JE, Cardoso WV, et al. Crumbs3-mediated polarity directs airway epithelial cell fate through the Hippo pathway effector Yap[J]. Dev Cell, 2015, 34(3): 283-296. DOI: 10.1016/j.devcel.2015.06.020. [17] Malik SA, Khan MS, Dar M, et al. TAZ is an independent prognostic factor in non-small cell lung carcinoma: elucidation at protein level[J]. Cancer Biomark, 2017, 18(4): 389-395. DOI: 10.3233/CBM-160263. [18] Chen HY, Yu SL, Ho BC, et al. R331W missense mutation of oncogene YAP1 is a germline risk allele for lung adenocarcinoma with medical actionability[J]. J Clin Oncol, 2015, 33(20): 2303-2310. DOI: 10.1200/JCO.2014.59.3590. [19] Noto A, De Vitis C, Pisanu ME, et al. Stearoyl-CoA-desaturase 1 regulates lung cancer stemness via stabilization and nuclear localization of YAP/TAZ[J]. Oncogene, 2017, 36(32): 4573-4584. DOI: 10.1038/onc.2017.75. [20] Zhang W, Gao Y, Li F, et al. YAP promotes malignant progression of Lkb1-deficient lung adenocarcinoma through downstream regulation of survivin[J]. Cancer Res, 2015, 75(21): 4450-4457. DOI: 10.1158/0008-5472.CAN-14-3396. [21] Noguchi S, Saito A, Horie M, et al. An integrative analysis of the tumorigenic role of TAZ in human non-small cell lung cancer[J]. Clin Cancer Res, 2014, 20(17): 4660-4672. DOI: 10.1158/1078-0432.CCR-13-3328. [22] Guo J, Wu Y, Yang L, et al. Repression of YAP by NCTD disrupts NSCLC progression[J]. Oncotarget, 2017, 8(2): 2307-2319. DOI: 10.18632/oncotarget.13668. [23] Lau AN, Curtis SJ, Fillmore CM, et al. Tumor-propagating cells and Yap/Taz activity contribute to lung tumor progression and metastasis[J]. EMBO J, 2014, 33(5): 468-481. DOI: 10.1002/embj.201386082. [24] Kandoth C, McLellan MD, Vandin F, et al. Mutational landscape and significance across 12 major cancer types[J]. Nature, 2013, 502(7471): 333-339. DOI: 10.1038/nature12634. [25] Zhang J, Xu Z, Yu L, et al. Assessment of the potential diagnostic value of serum p53 antibody for cancer: a meta-analysis[J]. PLoS One, 2014, 9(6): e99255. DOI: 10.1371/journal.pone.0099255. [26] Mattioni M, Soddu S, Prodosmo A, et al. Prognostic role of serum p53 antibodies in lung cancer[J]. BMC Cancer, 2015, 15: 148. DOI: 10.1186/s12885-015-1174-4. [27] Di Agostino S, Sorrentino G, Ingallina E, et al. YAP enhances the pro-proliferative transcriptional activity of mutant p53 proteins[J]. EMBO Rep, 2016, 17(2): 188-201. DOI: 10.15252/embr.201540488. [28] Ettinger DS, Aisner DL, Wood DE, et al. NCCN guidelines insights: non-small cell lung cancer, version 5.2018[J]. J Natl Compr Canc Netw, 2018, 16(7): 807-821. DOI: 10.6004/jnccn.2018.0062. [29] Zhao Z, Zheng N, Wang L, et al. Rottlerin exhibits antitumor activity via down-regulation of TAZ in non-small cell lung cancer[J]. Oncotarget, 2017, 8(5): 7827-7838. DOI: 10.18632/oncotarget.13974. [30] Nguyen HB, Babcock JT, Wells CD, et al. LKB1 tumor suppressor regulates AMP kinase/mTOR-independent cell growth and proliferation via the phosphorylation of Yap[J]. Oncogene, 2013, 32(35): 4100-4109. DOI: 10.1038/onc.2012.431. [31] Hsu YL, Hung JY, Chou SH, et al. Angiomotin decreases lung cancer progression by sequestering oncogenic YAP/TAZ and decreasing Cyr61 expression[J]. Oncogene, 2015, 34(31): 4056-4068. DOI: 10.1038/onc.2014.333. [32] Xu CM, Liu WW, Liu CJ, et al. Mst1 overexpression inhibited the growth of human non-small cell lung cancer in vitro and in vivo[J]. Cancer Gene Ther, 2013, 20(8): 453-460. DOI: 10.1038/cgt.2013.40. [33] Zhang W, Gao Y, Li P, et al. VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex[J]. Cell Res, 2014, 24(3): 331-343. DOI: 10.1038/cr.2014.10. [34] Xie M, Wu X, Zhang J, et al. Ski regulates Smads and TAZ signaling to suppress lung cancer progression[J]. Mol Carcinog, 2017, 56(10): 2178-2189. DOI: 10.1002/mc.22661. [35] McGowan M, Kleinberg L, Halvorsen AR, et al. NSCLC depend upon YAP expression and nuclear localization after acquiring resistance to EGFR inhibitors[J]. Genes Cancer, 2017, 8(3-4): 497-504. DOI: 10.18632/genesandcancer.136. [36] Cheng H, Zhang Z, RodriguezBarrueco R, et al. Functional genomics screen identifies YAP1 as a key determinant to enhance treatment sensitivity in lung cancer cells[J]. Oncotarget, 2016, 7(20): 28976-28988. DOI: 10.18632/oncotarget.6721. [37] Hsu PC, You B, Yang YL, et al. YAP promotes erlotinib resistance in human nonsmall cell lung cancer cells[J]. Oncotarget, 2016, 7(32): 51922-51933. DOI: 10.18632/oncotarget.10458. [38] Willers H, Azzoli CG, Santivasi WL, et al. Basic mechanisms of therapeutic resistance to radiation and chemotherapy in lung cancer[J]. Cancer J, 2013, 19(3): 200-207. DOI: 10.1097/PPO.0b013e318292e4e3. [39] Tian Y, Zhang Z, Miao L, et al. Anexelekto (AXL) increases resistance to EGFR-TKI and activation of AKT and ERK1/2 in non-small cell lung cancer cells[J]. Oncol Res, 2016, 24(5): 295-303. DOI: 10.3727/096504016X14648701447814. [40] Cianfrocca R, Rosanò L, Tocci P, et al. Blocking endothelin-1-receptor/β-catenin circuit sensitizes to chemotherapy in colorectal cancer[J]. Cell Death Differ, 2017, 24(10): 1811-1820. DOI: 10.1038/cdd.2017.121. [41] Azzolin L, Panciera T, Soligo S, et al. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response[J]. Cell, 2014, 158(1): 157-170. DOI: 10.1016/j.cell.2014.06.013. [42] Deng F, Peng L, Li Z, et al. YAP triggers the Wnt/β-catenin signalling pathway and promotes enterocyte self-renewal,regeneration and tumorigenesis after DSS-induced injury[J]. Cell Death Dis, 2018, 9(2): 153. DOI: 10.1038/s41419-017-0244-8. |
[1] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[2] | Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan. Progress of ferroptosis-related mechanisms in osteosarcoma [J]. Journal of International Oncology, 2024, 51(5): 308-311. |
[3] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[4] | Huang Hui, Ding Jianghua. Advances in targeting FGFR2 for treatment of advanced cholangiocarcinoma [J]. Journal of International Oncology, 2023, 50(9): 569-573. |
[5] | Wang Ting, Li Wenqian, Xie Youbang. Correlation between hypoxia and the oxygen sensing pathway in acute myeloid leukemia cells [J]. Journal of International Oncology, 2023, 50(8): 503-507. |
[6] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai. Research progress on the application of combining radiotherapy and systemic therapy in breast cancer [J]. Journal of International Oncology, 2023, 50(6): 362-367. |
[7] | Liu Li, Zhu Siqi, Sun Mengying, He Jingdong. Progress of PARP inhibitors in targeted therapy of small cell lung cancer [J]. Journal of International Oncology, 2023, 50(6): 368-372. |
[8] | Liu Bohan, Huang Junxing. Research progress of solute carriers related genes in malignant tumors [J]. Journal of International Oncology, 2023, 50(5): 280-284. |
[9] | Zhu Jun, Huang Meijin, Li Yuan, Liu Zegang, Xun Xin, Chen Hong. Research progress on targeted therapy of breast cancer with low expression of HER2 [J]. Journal of International Oncology, 2023, 50(4): 236-240. |
[10] | Deng Lili, Duan Xingyu, Li Baozhong. Advances of anti-HER2 targeted drugs and combined therapeutic regimens for gastric and esophagogastic adenocarcinoma [J]. Journal of International Oncology, 2023, 50(12): 751-757. |
[11] | Liu Shaoping, Luo Hanchuan, Lin Shuhan, Luo Jiahui. Current status and research progress of interventional and systemic therapy for advanced hepatocellular carcinoma [J]. Journal of International Oncology, 2023, 50(12): 758-762. |
[12] | Jiang Shan, Xu Ximing. Recent progresses of targeted therapy and immunotherapy of hepatocellular carcinoma [J]. Journal of International Oncology, 2023, 50(11): 688-695. |
[13] | Jiang Shan, Xu Yangtao, Liu Xin, Chen Wenliang, Xu Ximing. Predictive value of baseline peripheral blood inflammatory biomarkers for prognosis in patients with advanced hepatocellular carcinoma treated with immunotherapy combined with targeted therapy [J]. Journal of International Oncology, 2023, 50(10): 600-607. |
[14] | Zhang Jingxian, Su Jianfei, Wei Xueqin, Yi Dan, Li Xiaojiang. Treatment status of non-small cell lung cancer with METexon14 skipping mutation [J]. Journal of International Oncology, 2023, 50(1): 37-41. |
[15] | Song Jia, Hu Qinyong. Application of TACE combined with molecular targeted therapy and immunotherapy in BCLC B/C hepatocellular carcinoma [J]. Journal of International Oncology, 2022, 49(9): 550-554. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||