Journal of International Oncology ›› 2017, Vol. 44 ›› Issue (3): 231-234.doi: 10.3760/cma.j.issn.1673422X.2017.03.019
Previous Articles Next Articles
He Xiaoqin, Xu Ximing
Online:
2017-03-08
Published:
2017-02-28
Contact:
Xu Ximing
E-mail:doctorxu120@aliyun.com
He Xiaoqin, Xu Ximing. Research progress of the competing endogenous RNA in primary hepatocellular carcinoma[J]. Journal of International Oncology, 2017, 44(3): 231-234.
[1] Casane D, Fumey J, Laurenti P. ENCODE apophenia or a panglossian analysis of the human genome[J]. Med Sci (Paris), 2015, 31(6/7): 680-686. DOI: 10.1051/medsci/20153106023. [2] Veneziano D, Di Bella S, Nigita G, et al. Noncoding RNA: current deep sequencing data analysis approaches and challenges[J]. Hum Mutat, 2016, 37(12): 1283-1298. DOI: 10.1002/humu.23066. [3] Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition[J]. Nature, 2014, 505(7483): 344-352. DOI: 10.1038/nature12986. [4] Zhang Y, Xu Y, Feng L, et al. Comprehensive characterization of lncRNAmRNA related ceRNA network across 12 major cancers[J]. Oncotarget, 2016, 7(39): 64148-64167. DOI: 10.18632/oncotarget.11637. [5] Liu XH, Sun M, Nie FQ, et al. Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR3313p in gastric cancer[J]. Mol Cancer, 2014, 13(1): 92. DOI: 10.1186/14764598 1392. [6] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J ]. CA Cancer J Clin, 2016, 66(2): 115-132. DOI: 10.3322/caac.21338. [7] Yang C, Wu D, Gao L, et al. Competing endogenous RNA networks in human cancer: hypothesis, validation, and perspectives[J]. Oncotarget, 2016, 7(12): 13479-13490. DOI: 10.18632/oncotarget.7266. [8] Cao C, Sun J, Zhang D, et al. The long intergenic noncoding RNA UFC1, a target of microRNA 34a, interacts with the mRNA stabilizing protein HuR to increase levels of βcatenin in HCC cells[J]. Gastroenterology, 2015, 148(2): 415-426.e18. DOI: 10.1053/j.gastro.2014.10.012. [9] Yoo S, Kim HH, Kim P, et al. A HuDZBP1 ribonucleoprotein complex localizes GAP43 mRNA into axons through its 3′ untranslated region AUrich regulatory element[J]. J Neurochem, 2013, 126(6): 792-804. DOI: 10.1111/jnc.12266. [10] An Y, Furber KL, Ji S. Pseudogenes regulate parental gene expression via ceRNA network[J]. J Cell Mol Med, 2017, 21(1): 185-192. DOI: 10.1111/jcmm.12952. [11] Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy[J]. Nat Rev Genet, 2016, 17(5): 272-283. DOI: 10.1038/nrg.2016.20. [12] Kluiver J, SlezakProchazka I, SmigielskaCzepiel K, et al. Generation of miRNA sponge constructs[J]. Methods, 2012, 58(2): 113-117. DOI: 10.1016/j.ymeth.2012.07.019. [13] Tay FC, Lim JK, Zhu H, et al. Using artificial microRNA sponges to achieve microRNA lossoffunction in cancer cells[J]. Adv Drug Deliv Rev, 2015, 81(81): 117-127. DOI: 10.1016/j.addr.2014.05.010. [14] Giza DE, Vasilescu C, Calin GA. MicroRNAs and ceRNAs: therapeutic implications of RNA networks[J]. Expert Opin Biol Ther, 2014, 14(9): 1285 -1293. DOI: 10.1517/14712598.2014.920812. [15] Karreth FA, Pandolfi PP. ceRNA crosstalk in cancer: when cebling rivalries go awry[J]. Cancer Discov, 2013, 3(10): 1113-1121. DOI: 10.1158/21598290.CD130202. [16] Dong P, Xiong Y, Watari H, et al. MiR137 and miR34a directly target Snail and inhibit EMT, invasion and sphereforming ability of ovarian cancer cells[J]. J Exp Clin Cancer Res, 2016, 35(1): 132. DOI: 10.1186/s130460160415y. [17] Dang Y, Luo D, Rong M, et al. Underexpression of miR34a in hepatocellular carcinoma and its contribution towards enhancement of proliferating inhibitory effects of agents targeting cMET[J]. PLoS One, 2013, 8(4): e61054. DOI: 10.1371/journal.pone.0061054. [18] ArriagaCanon C, FonsecaGuzmán Y, ValdesQuezada C, et al. A long noncoding RNA promotes full activation of adult gene expression in the chicken αglobin domain[J]. Epigenetics, 2014, 9(1): 173-181. DOI: 10.4161/epi.27030. [19] Gutschner T, Diederichs S. The hallmarks of cancer: a long noncoding RNA point of view[J]. RNA Biol, 2012, 9(6): 703-719. DOI: 10.4161/rna.20481. [20] Kallen AN, Zhou XB, Xu J, et al. The imprinted H19 lncRNA antagonizes let7 microRNAs[J]. Mol Cell, 2013, 52(1): 101-112. DOI: 10.1016/j.molcel.2013.08.027. [21] Wang F, Yuan JH, Wang SB, et al. Oncofetal long noncoding RNA PVT1 promotes proliferation and stem celllike property of hepatocellular carcinoma cells by stabilizing NOP2[J]. Hepatology, 2014, 60(4): 1278-1290. DOI: 10.1002/hep.27239. [22] Li SP, Xu HX, Yu Y, et al. LncRNA HULC enhances epithelialmesenchymal transition to promote tumorigenesis and metastasis of hepatocellular carcinoma via the miR200a3p/ZEB1 signaling pathway[J ]. Oncotarget, 2016, 7(27): 42431-42446. DOI: 10.18632/oncotarget.9883. [23] Deng L, Yang SB, Xu FF, et al. Long noncoding RNA CCAT1 promotes hepatocellular carcinoma progression by functioning as let7 sponge[J]. J Exp Clin Cancer Res, 2015, 34: 18. DOI: 10.1186/s1304601501367. [24] Fang L, Du WW, Yang X, et al. Versican 3′untranslated region (3′ UTR) functions as a ceRNA in inducing the development of hepatocellular carcinoma by regulating miRNA activity[J]. FASEB J, 2013, 27(3): 907-919. DOI: 10.1096/fj.12220905. [25] Zhao L, Li F, Taylor EW. Can tobacco use promote HCVinduced miR122 hijacking and hepatocarcinogenesis?[J]. Med Hypotheses, 2013, 80(2): 131-133. DOI: 10.1016/j.mehy.2012.11.009. [26] Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441): 333-338. DOI: 10.1038/nature11928. [27] Shang X, Li G, Liu H, et al. Comprehensive circular RNA profiling reveals that hsa_circ_0005075, a new circular RNA biomarker, is involved in hepatocellular crcinoma development[J]. Medicine (Baltimore), 2016, 95 (22): e3811. DOI: 10.1097/MD.0000000000003811. [28] Esposito F, De Martino M, Petti MG, et al. HMGA1 pseudogenes as candidate protooncogenic competitive endogenous RNAs[J]. Oncotarget, 2014, 5(18): 8341-8354. DOI: 10.18632/oncotarget.2202. [29] Cheng DL, Xiang YY, Ji LJ, et al. Competing endogenous RNA interplay in cancer: mechanism, methodology, and perspectives[J]. Tumour Biol, 2015, 36(2): 479-488. DOI: 10.1007/s132770153093z. |
[1] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[2] | Peng Qin, Cai Yuting, Wang Wei. Advances on KPNA2 in liver cancer [J]. Journal of International Oncology, 2024, 51(3): 181-185. |
[3] | Gong Yan, Chen Honglei. Research progress on the mechanism of microRNA regulation of cisplatin resistance in ovarian cancer [J]. Journal of International Oncology, 2024, 51(3): 186-190. |
[4] | Sun Guobao, Yang Qian, Zhuang Qingchun, Gao Binbin, Sun Xiaogang, Song Wei, Sha Dan. Research progress on the histopathological growth patterns of colorectal liver metastasis [J]. Journal of International Oncology, 2024, 51(2): 114-118. |
[5] | Xiang Yuling, Tan Jiajie, Xiong Yuanguo, Zhao Lirong, Li Chen, Zhang Hong. Effects of Anhydroicaritin on the proliferation, migration and apoptosis of hepatocellular carcinoma cells [J]. Journal of International Oncology, 2023, 50(9): 513-519. |
[6] | Quan Zhenhao, Xu Feipeng, Huang Zhe, Huang Xianjin, Chen Rihong, Sun Kaiyu, Hu Xu, Lin Lin. lncRNA FTX silencing inhibits gastric cancer cell proliferation through the miR-22-3p/NLRP3 inflammasome pathway [J]. Journal of International Oncology, 2023, 50(4): 202-207. |
[7] | Li Jiaxuan, Feng Yinglu. Mechanism of action of glucocorticoid receptors in the growth of hepatoma cells [J]. Journal of International Oncology, 2023, 50(4): 241-243. |
[8] | He Ting, Wang Xi, Zhang Huizhong, Liu Xinyang, Wang Huiping, Dong Ke. Diagnostic value of serum TIM-3 in patients with liver cancer [J]. Journal of International Oncology, 2022, 49(9): 537-542. |
[9] | Zhou Renbang, Zhang Zhongchuan, Xu Zhiyuan, Zhu Xunbing. MiR-219a-5p inhibits the proliferation, invasion and migration of osteosarcoma U2OS cells by negatively regulating HMGA2 [J]. Journal of International Oncology, 2022, 49(4): 193-198. |
[10] | Jin Jiahui, Chen Cunhai, Ma Xuezhen. Effects of radiation-associated miRNA in radiotherapy for breast cancer [J]. Journal of International Oncology, 2022, 49(12): 735-738. |
[11] | Jing Wenjun, Zhao Wenwen, Feng Qingqing, Zhao Wenfei, Zhao Lili, Zhang Xue, Wei Hongmei. Molecular basis and clinical prospect of the miR-34 family for the treatment of gastric cancer [J]. Journal of International Oncology, 2022, 49(11): 681-686. |
[12] | Zhang Yumin, Zhao Xianwei, He Qianjin, Chen Jieneng. Value of contrast-enhanced ultrasound combined with serum CXCL8 and CXCR2 in the evaluation of postoperative efficacy of transcatheter arterial chemoembolization for primary liver cancer [J]. Journal of International Oncology, 2022, 49(10): 592-596. |
[13] | Di Weihua, Zhao Xuemei. Research progress on the relationship between DNA damage repair genes and liver cancer [J]. Journal of International Oncology, 2022, 49(10): 635-638. |
[14] | Luo Liyun, Lai Canhui, Liang Renpei, Yang Aiwu, Lin Zhimin. Correlation between the expressions of miR-524-5p and SOX9 in advanced gastric cancer and their influences on chemotherapy efficacy and prognosis [J]. Journal of International Oncology, 2022, 49(1): 45-50. |
[15] | Hong Anlan, Cao Meng, Wang Yan, Fang Fang. Research progress on lncRNAs as members of ceRNA network in melanoma [J]. Journal of International Oncology, 2022, 49(1): 61-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||