Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (9): 537-542.doi: 10.3760/cma.j.cn371439-20220506-00104
• Original Articles • Previous Articles Next Articles
He Ting, Wang Xi, Zhang Huizhong, Liu Xinyang, Wang Huiping, Dong Ke()
Received:
2022-05-06
Revised:
2022-07-05
Online:
2022-09-08
Published:
2022-10-21
Contact:
Dong Ke
E-mail:tdjyk3@fmmu.edu.cn
Supported by:
He Ting, Wang Xi, Zhang Huizhong, Liu Xinyang, Wang Huiping, Dong Ke. Diagnostic value of serum TIM-3 in patients with liver cancer[J]. Journal of International Oncology, 2022, 49(9): 537-542.
"
指标 | 乙型肝炎组(n=37) | 肝硬化组(n=44) | 肝癌组(n=27) | χ2值 | P值 |
---|---|---|---|---|---|
AFP(ng/ml) | 15.2(8.6,317.5) | 3.4(2.0,127.6)a | 47.3(16.7,232.0) | 11.75 | 0.003 |
总蛋白(g/L) | 62.6(55.2,68.7) | 65.8(56.7,71.9) | 62.3(59.4,68.0) | 0.44 | 0.804 |
白蛋白(g/L) | 33.9(30.6,40.4) | 33.6(29.4,43.5) | 32.6(31.1,36.8) | 0.37 | 0.833 |
球蛋白(g/L) | 27.2(23.5,32.0) | 26.5(22.2,32.6) | 28.7(24.0,35.4) | 1.14 | 0.566 |
白蛋白/球蛋白 | 1.3(1.0,1.6) | 1.3(0.9,1.7) | 1.2(1.0,1.6) | 0.69 | 0.709 |
总胆红素(μmol/L) | 75.4(23.3,209.0) | 21.9(14.9,36.8)ab | 30.1(23.6,55.8)b | 22.85 | <0.001 |
直接胆红素(μmol/L) | 44.4(9.7,110.8) | 8.0(5.3,16.8)ab | 12.3(10.0,26.8)b | 25.90 | <0.001 |
间接胆红素(μmol/L) | 32.5(13.7,93.2) | 13.9(9.4,21.2)b | 15.8(13.1,29.0)b | 19.92 | <0.001 |
谷丙转氨酶(U/L) | 142.0(62.0,370.0) | 26.0(18.0,41.5)b | 31.0(22.0,51.0)b | 36.64 | <0.001 |
谷草转氨酶(U/L) | 109.0(44.5,219.0) | 33.0(26.0,50.0)b | 55.0(37.0,161.0)b | 26.26 | <0.001 |
谷草转氨酶/谷丙转氨酶 | 0.7(0.6,1.1) | 1.3(1.0,1.6)ab | 1.6(1.2,3.0)b | 34.67 | <0.001 |
总胆汁酸(μmol/L) | 103.9(14.1,353.1) | 14.3(3.2,64.1)ab | 15.9(8.3,87.7)b | 13.10 | <0.001 |
"
指标 | 健康对照组(n=35) | 乙型肝炎组(n=37) | 肝硬化组(n=44) | 肝癌组(n=27) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
r值 | P值 | r值 | P值 | r值 | P值 | r值 | P值 | ||||
AFP | 0.05 | 0.791 | 0.18 | 0.497 | 0.03 | 0.883 | 0.24 | 0.396 | |||
总蛋白 | 0.36 | 0.036 | 0.22 | 0.186 | 0.14 | 0.411 | 0.08 | 0.684 | |||
白蛋白 | 0.27 | 0.122 | <0.01 | 0.995 | 0.19 | 0.250 | 0.01 | 0.949 | |||
球蛋白 | 0.24 | 0.166 | 0.35 | 0.034 | 0.17 | 0.304 | 0.08 | 0.709 | |||
白蛋白/球蛋白 | 0.09 | 0.587 | 0.28 | 0.096 | 0.14 | 0.421 | 0.13 | 0.527 | |||
总胆红素 | 0.01 | 0.968 | 0.04 | 0.812 | 0.26 | 0.126 | 0.01 | 0.973 | |||
直接胆红素 | 0.01 | 0.978 | 0.03 | 0.852 | 0.26 | 0.120 | 0.06 | 0.747 | |||
间接胆红素 | 0.01 | 0.945 | 0.05 | 0.771 | 0.22 | 0.182 | 0.05 | 0.817 | |||
谷丙转氨酶 | 0.15 | 0.378 | 0.02 | 0.726 | 0.22 | 0.198 | 0.23 | 0.256 | |||
谷草转氨酶 | 0.15 | 0.395 | 0.06 | 0.557 | 0.22 | 0.193 | 0.10 | 0.622 | |||
谷草转氨酶/谷丙转氨酶 | 0.20 | 0.255 | 0.10 | 0.805 | 0.08 | 0.654 | 0.26 | 0.193 | |||
总胆汁酸 | 0.11 | 0.535 | 0.09 | 0.497 | 0.18 | 0.288 | 0.46 | 0.017 |
[1] |
McIntire JJ, Umetsu SE, Akbari O, et al. Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family[J]. Nat Immunol, 2001, 2(12): 1109-1116. DOI: 10.1038/ni739.
doi: 10.1038/ni739 pmid: 11725301 |
[2] |
Wolf Y, Anderson AC, Kuchroo VK. TIM3 comes of age as an inhibitory receptor[J]. Nat Rev Immunol, 2020, 20(3): 173-185. DOI: 10.1038/s41577-019-0224-6.
doi: 10.1038/s41577-019-0224-6 pmid: 31676858 |
[3] |
Monney L, Sabatos CA, Gaglia JL, et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease[J]. Nature, 2002, 415(6871): 536-541. DOI: 10.1038/415536a.
doi: 10.1038/415536a |
[4] |
Kandel S, Adhikary P, Li G, et al. The TIM3/Gal9 signaling pathway: an emerging target for cancer immunotherapy[J]. Cancer Lett, 2021, 510: 67-78. DOI: 10.1016/j.canlet.2021.04.011.
doi: 10.1016/j.canlet.2021.04.011 pmid: 33895262 |
[5] |
Tian T, Li Z. Targeting Tim-3 in cancer with resistance to PD-1/PD-L1 blockade[J]. Front Oncol, 2021, 11: 731175. DOI: 10.3389/fonc.2021.731175.
doi: 10.3389/fonc.2021.731175 |
[6] |
Nakano M, Ito M, Tanaka R, et al. PD-1+ TIM-3+ T cells in malignant ascites predict prognosis of gastrointestinal cancer[J]. Cancer Sci, 2018, 109(9): 2986-2992. DOI: 10.1111/cas.13723.
doi: 10.1111/cas.13723 |
[7] |
Sasidharan Nair V, Toor SM, Taha RZ, et al. DNA methylation and repressive histones in the promoters of PD-1, CTLA-4, TIM-3, LAG-3, TIGIT, PD-L1, and galectin-9 genes in human colorectal cancer[J]. Clin Epigenetics, 2018, 10(1): 104. DOI: 10.1186/s13148-018-0539-3.
doi: 10.1186/s13148-018-0539-3 |
[8] |
Li H, Wu K, Tao K, et al. Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma[J]. Hepatology, 2012, 56(4): 1342-1351. DOI: 10.1002/hep.25777.
doi: 10.1002/hep.25777 pmid: 22505239 |
[9] |
Liu F, Liu Y, Chen Z. Tim-3 expression and its role in hepatocellular carcinoma[J]. J Hematol Oncol, 2018, 11(1): 126. DOI: 10.1186/s13045-018-0667-4.
doi: 10.1186/s13045-018-0667-4 |
[10] |
Zhuang X, Zhang X, Xia X, et al. Ectopic expression of TIM-3 in lung cancers: a potential independent prognostic factor for patients with NSCLC[J]. Am J Clin Pathol, 2012, 137(6): 978-985. DOI: 10.1309/AJCP9Q6OVLVSHTMY.
doi: 10.1309/AJCP9Q6OVLVSHTMY pmid: 22586058 |
[11] |
Wiener Z, Kohalmi B, Pocza P, et al. TIM-3 is expressed in melanoma cells and is upregulated in TGF-beta stimulated mast cells[J]. J Invest Dermatol, 2007, 127(4): 906-914. DOI: 10.1038/sj.jid.5700616.
doi: 10.1038/sj.jid.5700616 pmid: 17096021 |
[12] |
Wei W, Jiang D, Lee HJ, et al. ImmunoPET imaging of TIM-3 in murine melanoma models[J]. Adv Ther (Weinh), 2020, 3(7): 2000018. DOI: 10.1002/adtp.202000018.
doi: 10.1002/adtp.202000018 |
[13] |
Chiba S, Baghdadi M, Akiba H, et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1[J]. Nat Immunol, 2012, 13(9): 832-842. DOI: 10.1038/ni.2376.
doi: 10.1038/ni.2376 pmid: 22842346 |
[14] |
Shi Z, Lian A, Zhang F. Nuclear factor-κB activation inhibitor attenuates ischemia reperfusion injury and inhibits Hmgb1 expression[J]. Inflamm Res, 2014, 63(11): 919-925. DOI: 10.1007/s00011-014-0765-x.
doi: 10.1007/s00011-014-0765-x pmid: 25209109 |
[15] |
Zhang W, Zhang Y, He Y, et al. Lipopolysaccharide mediates time-dependent macrophage M1/M2 polarization through the Tim-3/Galectin-9 signalling pathway[J]. Exp Cell Res, 2019, 376(2): 124-132. DOI: 10.1016/j.yexcr.2019.02.007.
doi: S0014-4827(19)30053-9 pmid: 30763585 |
[16] |
Mewes C, Alexander T, Büttner B, et al. TIM-3 genetic variants are associated with altered clinical outcome and susceptibility to Gram-positive infections in patients with sepsis[J]. Int J Mol Sci, 2020, 21(21): 8318. DOI: 10.3390/ijms21218318.
doi: 10.3390/ijms21218318 |
[17] |
Du X, Wu Z, Xu Y, et al. Increased Tim-3 expression alleviates liver injury by regulating macrophage activation in MCD-induced NASH mice[J]. Cell Mol Immunol, 2019, 16(11): 878-886. DOI: 10.1038/s41423-018-0032-0.
doi: 10.1038/s41423-018-0032-0 pmid: 29735977 |
[18] |
Rezaei M, Tan J, Zeng C, et al. TIM-3 in leukemia; immune response and beyond[J]. Front Oncol, 2021, 11: 753677. DOI: 10.3389/fonc.2021.753677.
doi: 10.3389/fonc.2021.753677 |
[19] |
Pang N, Alimu X, Chen R, et al. Activated Galectin-9/Tim3 promotes Treg and suppresses Th1 effector function in chronic lymphocytic leukemia[J]. FASEB J, 2021, 35(7): e21556. DOI: 10.1096/fj.202100013R.
doi: 10.1096/fj.202100013R |
[20] |
Wu W, Shi Y, Li J, et al. Tim-3 expression on peripheral T cell subsets correlates with disease progression in hepatitis B infection[J]. Virol J, 2011, 8: 113. DOI: 10.1186/1743-422X-8-113.
doi: 10.1186/1743-422X-8-113 pmid: 21392402 |
[21] |
王林萍, 刘宏峰, 苏春霞, 等. 肝细胞癌患者血清Tim-3水平及其与疾病分期的相关性分析[J]. 中国肝脏病杂志(电子版), 2015, 7(4): 39-41. DOI: 10.3969/j.issn.1674-7380.2015.04.012.
doi: 10.3969/j.issn.1674-7380.2015.04.012 |
[22] |
Li Z, Li N, Zhu Q, et al. Genetic variations of PD1 and TIM3 are differentially and interactively associated with the development of cirrhosis and HCC in patients with chronic HBV infection[J]. Infect Genet Evol, 2013, 14: 240-246. DOI: 10.1016/j.meegid.2012.12.008.
doi: 10.1016/j.meegid.2012.12.008 pmid: 23291409 |
[1] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[2] | Peng Qin, Cai Yuting, Wang Wei. Advances on KPNA2 in liver cancer [J]. Journal of International Oncology, 2024, 51(3): 181-185. |
[3] | Sun Guobao, Yang Qian, Zhuang Qingchun, Gao Binbin, Sun Xiaogang, Song Wei, Sha Dan. Research progress on the histopathological growth patterns of colorectal liver metastasis [J]. Journal of International Oncology, 2024, 51(2): 114-118. |
[4] | Xiang Yuling, Tan Jiajie, Xiong Yuanguo, Zhao Lirong, Li Chen, Zhang Hong. Effects of Anhydroicaritin on the proliferation, migration and apoptosis of hepatocellular carcinoma cells [J]. Journal of International Oncology, 2023, 50(9): 513-519. |
[5] | Li Jiaxuan, Feng Yinglu. Mechanism of action of glucocorticoid receptors in the growth of hepatoma cells [J]. Journal of International Oncology, 2023, 50(4): 241-243. |
[6] | Sun Xiaoke, Yang Yu. Correlations between genomic and transcriptome characteristics and immune in hepatocellular carcinoma [J]. Journal of International Oncology, 2022, 49(5): 302-306. |
[7] | Zhang Yumin, Zhao Xianwei, He Qianjin, Chen Jieneng. Value of contrast-enhanced ultrasound combined with serum CXCL8 and CXCR2 in the evaluation of postoperative efficacy of transcatheter arterial chemoembolization for primary liver cancer [J]. Journal of International Oncology, 2022, 49(10): 592-596. |
[8] | Di Weihua, Zhao Xuemei. Research progress on the relationship between DNA damage repair genes and liver cancer [J]. Journal of International Oncology, 2022, 49(10): 635-638. |
[9] | Du Jiahang, Chen Dong, Chen Yaoting. Research progress of arsenic trioxide in anti-liver cancer mechanism and treatment of hepatocellular carcinoma [J]. Journal of International Oncology, 2021, 48(9): 572-. |
[10] | Han Baojun. Expression of histone acetyltransferase P300 in hepatocellular carcinoma tissue and its clinical significance [J]. Journal of International Oncology, 2021, 48(7): 415-419. |
[11] | Zhang Yuyuan, Li Zhen, Zhan Pengchao, Li Xin, Ye Shuwen, Wang Caihong, Liu Yang. Progress of biomarkers in liver cancer [J]. Journal of International Oncology, 2021, 48(4): 241-245. |
[12] | Xiong Lin, Zhang Xiuyun, Zhang Xiaoyu, Li Yue, Xu Ximing. IWR-1-endo affects the migration and proliferation of hepatocarcinoma cells by inhibiting the Wnt pathway [J]. Journal of International Oncology, 2021, 48(12): 711-715. |
[13] | Liu Junguo, Zhang Jinjuan, Wang Yijun. Clinical application progress of variations in the technique of liver partition from ALPPS [J]. Journal of International Oncology, 2020, 47(8): 492-495. |
[14] | Xin Ruiqiang, Song Xiaoping, Zhang Fan, Sun Ying, Wang Tao, Sun Wei. Mechanism of SUMO regulating XBP1 mediated endoplasmic reticulum stress on the progression of liver cancer [J]. Journal of International Oncology, 2020, 47(7): 397-403. |
[15] | Zhao Chuanxi, Zhu Tingting, Liu Mingguo, Cao Lili. Advances of Krüppel-like factors in hepatocellular carcinoma [J]. Journal of International Oncology, 2020, 47(2): 119-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||