Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (10): 635-638.doi: 10.3760/cma.j.cn371439-20220520-00127
• Reviews • Previous Articles Next Articles
Received:
2022-05-20
Revised:
2022-08-04
Online:
2022-10-08
Published:
2022-12-01
Contact:
Zhao Xuemei
E-mail:zhaoxm@sdfmu.edu.cn
Di Weihua, Zhao Xuemei. Research progress on the relationship between DNA damage repair genes and liver cancer[J]. Journal of International Oncology, 2022, 49(10): 635-638.
[1] |
Gillman R, Lopes Floro K, Wankell M, et al. The role of DNA damage and repair in liver cancer[J]. Biochim Biophys Acta Rev Cancer, 2021, 1875(1): 188493. DOI: 10.1016/j.bbcan.2020.188493.
doi: 10.1016/j.bbcan.2020.188493 |
[2] |
Lin J, Shi J, Guo H, et al. Alterations in DNA damage repair genes in primary liver cancer[J]. Clin Cancer Res, 2019, 25(15): 4701-4711. DOI: 10.1158/1078-0432.CCR-19-0127.
doi: 10.1158/1078-0432.CCR-19-0127 pmid: 31068370 |
[3] |
Xiong Y, Zhang Q, Ye J, et al. Associations between three XRCC1 polymorphisms and hepatocellular carcinoma risk: a meta-analysis of case-control studies[J]. PLoS One, 2018, 13(11): e0206853. DOI: 10.1371/journal.pone.0206853.
doi: 10.1371/journal.pone.0206853 |
[4] |
Kumar N, Raja S, Van Houten B. The involvement of nucleotide excision repair proteins in the removal of oxidative DNA damage[J]. Nucleic Acids Res, 2020, 48(20): 11227-11243. DOI: 10.1093/nar/gkaa777.
doi: 10.1093/nar/gkaa777 pmid: 33010169 |
[5] |
Zhuo Z, Miao L, Hua W, et al. Genetic variations in nucleotide excision repair pathway genes and hepatoblastoma susceptibility[J]. Int J Cancer, 2021, 149(9): 1649-1658. DOI: 10.1002/ijc.33722.
doi: 10.1002/ijc.33722 |
[6] |
Saha J, Bae J, Wang SY, et al. Ablating putative Ku70 phosphorylation sites results in defective DNA damage repair and spontaneous induction of hepatocellular carcinoma[J]. Nucleic Acids Res, 2021, 49(17): 9836-9850. DOI: 10.1093/nar/gkab743.
doi: 10.1093/nar/gkab743 pmid: 34428289 |
[7] |
Yue X, Bai C, Xie D, et al. DNA-PKcs: a multi-faceted player in DNA damage response[J]. Front Genet, 2020, 11: 607428. DOI: 10.3389/fgene.2020.607428.
doi: 10.3389/fgene.2020.607428 |
[8] |
Pannunzio NR, Watanabe G, Lieber MR. Nonhomologous DNA end-joining for repair of DNA double-strand breaks[J]. J Biol Chem, 2018, 293(27): 10512-10523. DOI: 10.1074/jbc.TM117.000374.
doi: 10.1074/jbc.TM117.000374 pmid: 29247009 |
[9] |
Ma M, Rodriguez A, Sugimoto K. Activation of ATR-related protein kinase upon DNA damage recognition[J]. Curr Genet, 2020, 66(2): 327-333. DOI: 10.1007/s00294-019-01039-w.
doi: 10.1007/s00294-019-01039-w pmid: 31624858 |
[10] |
Ge C, Vilfranc CL, Che L, et al. The BRUCE-ATR signaling axis is required for accurate DNA replication and suppression of liver cancer development[J]. Hepatology, 2019, 69(6): 2608-2622. DOI: 10.1002/hep.30529.
doi: 10.1002/hep.30529 pmid: 30693543 |
[11] |
朱柯亭, 武振汝, 卢徐锋, 等. 肝细胞肝癌中HDAC3的表达及临床意义[J]. 世界华人消化杂志, 2017, 25(10): 922-928. DOI: 10.11569/wcjd.v25.i10.922.
doi: 10.11569/wcjd.v25.i10.922 |
[12] |
Ji H, Zhou Y, Zhuang X, et al. HDAC3 deficiency promotes liver cancer through a defect in H3K9ac/H3K9me3 transition[J]. Cancer Res, 2019, 79(14): 3676-3688. DOI: 10.1158/0008-5472.CAN-18-3767.
doi: 10.1158/0008-5472.CAN-18-3767 pmid: 31097476 |
[13] |
Boege Y, Malehmir M, Healy ME, et al. A dual role of caspase-8 in triggering and sensing proliferation-associated DNA damage, a key determinant of liver cancer development[J]. Cancer Cell, 2017, 32(3): 342-359.e10. DOI: 10.1016/j.ccell.2017.08.010.
doi: S1535-6108(17)30354-9 pmid: 28898696 |
[14] |
Mo J, Liang H, Su C, et al. DDX3X: structure, physiologic functions and cancer[J]. Mol Cancer, 2021, 20(1): 38. DOI: 10.1186/s12943-021-01325-7.
doi: 10.1186/s12943-021-01325-7 pmid: 33627125 |
[15] |
Chan CH, Chen CM, Lee YW, et al. DNA damage, liver injury, and tumorigenesis: consequences of DDX3X loss[J]. Mol Cancer Res, 2019, 17(2): 555-566. DOI: 10.1158/1541-7786.MCR-18-0551.
doi: 10.1158/1541-7786.MCR-18-0551 |
[16] |
Shen J, Chen M, Lee D, et al. Histone chaperone FACT complex mediates oxidative stress response to promote liver cancer progression[J]. Gut, 2020, 69(2): 329-342. DOI: 10.1136/gutjnl-2019-318668.
doi: 10.1136/gutjnl-2019-318668 pmid: 31439637 |
[17] |
Goldstein M, Kastan MB. The DNA damage response: implications for tumor responses to radiation and chemotherapy[J]. Annu Rev Med, 2015, 66: 129-143. DOI: 10.1146/annurev-med-081313-121208.
doi: 10.1146/annurev-med-081313-121208 pmid: 25423595 |
[18] |
Chen CC, Chen CY, Cheng SF, et al. Hydroxygenkwanin increases the sensitivity of liver cancer cells to chemotherapy by inhibiting DNA damage response in mouse xenograft models[J]. Int J Mol Sci, 2021, 22(18): 9766. DOI: 10.3390/ijms22189766.
doi: 10.3390/ijms22189766 |
[19] |
Herath NI, Devun F, Herbette A, et al. Potentiation of doxorubicin efficacy in hepatocellular carcinoma by the DNA repair inhibitor DT01 in preclinical models[J]. Eur Radiol, 2017, 27(10): 4435-4444. DOI: 10.1007/s00330-017-4792-1.
doi: 10.1007/s00330-017-4792-1 pmid: 28374075 |
[20] |
Chen CC, Chen CY, Ueng SH, et al. Corylin increases the sensitivity of hepatocellular carcinoma cells to chemotherapy through long noncoding RNA RAD51-AS1-mediated inhibition of DNA repair[J]. Cell Death Dis, 2018, 9(5): 543. DOI: 10.1038/s41419-018-0575-0.
doi: 10.1038/s41419-018-0575-0 |
[21] |
Wang C, Tang H, Geng A, et al. Rational combination therapy for hepatocellular carcinoma with PARP1 and DNA-PK inhibitors[J]. Proc Natl Acad Sci U S A, 2020, 117(42): 26356-26365. DOI: 10.1073/pnas.2002917117.
doi: 10.1073/pnas.2002917117 pmid: 33020270 |
[22] |
Cherng YG, Chu YC, Yadav VK, et al. Induced mitochondrial alteration and DNA damage via IFNGR-JAK2-STAT1-PARP1 pathway facilitates viral hepatitis associated hepatocellular carcinoma aggressiveness and stemness[J]. Cancers (Basel), 2021, 13(11): 2755. DOI: 10.3390/cancers13112755.
doi: 10.3390/cancers13112755 |
[23] |
周蔚文, 孙晓南. 肝外胆管癌放疗的研究进展[J]. 国际肿瘤学杂志, 2020, 47(7): 431-435. DOI: 10.3760/cma.j.cn371439-20200224-00051.
doi: 10.3760/cma.j.cn371439-20200224-00051 |
[24] |
Sheng H, Huang Y, Xiao Y, et al. ATR inhibitor AZD6738 enhances the antitumor activity of radiotherapy and immune checkpoint inhibitors by potentiating the tumor immune microenvironment in hepatocellular carcinoma[J]. J Immunother Cancer, 2020, 8(1): e000340. DOI: 10.1136/jitc-2019-000340.
doi: 10.1136/jitc-2019-000340 |
[25] |
Xie Y, Liu C, Zhang Y, et al. PKI-587 enhances radiosensitization of hepatocellular carcinoma by inhibiting the PI3K/AKT/mTOR pathways and DNA damage repair[J]. PLoS One, 2021, 16(10): e0258817. DOI: 10.1371/journal.pone.0258817.
doi: 10.1371/journal.pone.0258817 |
[26] |
Gerossier L, Dubois A, Paturel A, et al. PARP inhibitors and radiation potentiate liver cell death in vitro. Do hepatocellular carcinomas have an achilles' heel?[J]. Clin Res Hepatol Gastroenterol, 2021, 45(5): 101553. DOI: 10.1016/j.clinre.2020.09.014.
doi: 10.1016/j.clinre.2020.09.014 |
[27] |
Chen Y, Wang X, Deng X, et al. DNA damage repair status predicts opposite clinical prognosis immunotherapy and non-immunotherapy in hepatocellular carcinoma[J]. Front Immunol, 2021, 12: 676922. DOI: 10.3389/fimmu.2021.676922.
doi: 10.3389/fimmu.2021.676922 |
[28] |
李华兰. XPC、ERCC1及XPF表达与肝细胞癌临床病理特征及预后的相关性研究[D]. 南宁: 广西医科大学, 2019. DOI: 10.27038/d.cnki.ggxyu.2019.000139.
doi: 10.27038/d.cnki.ggxyu.2019.000139 |
[29] |
Liao X, Li Y, Li H, et al. Expression and clinical significance of ERCC1 and XPF in human hepatocellular carcinoma[J]. Onco Targets Ther, 2020, 13: 1059-1072. DOI: 10.2147/OTT.S237916.
doi: 10.2147/OTT.S237916 |
[30] |
Chen X, Legrand AJ, Cunniffe S, et al. Interplay between base excision repair protein XRCC1 and ALDH2 predicts overall survival in lung and liver cancer patients[J]. Cell Oncol (Dordr), 2018, 41(5): 527-539. DOI: 10.1007/s13402-018-0390-8.
doi: 10.1007/s13402-018-0390-8 |
[1] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei. Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study [J]. Journal of International Oncology, 2024, 51(6): 326-331. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[4] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[5] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[6] | Liu Pingping, He Xuefang, Zhang Yi, Yang Xu, Zhang Shanshan, Ji Yifei. Risk factors of postoperative recurrence in patients with primary brain glioma and prediction model construction [J]. Journal of International Oncology, 2024, 51(4): 193-197. |
[7] | Wan Fang, Yang Gang, Li Rui, Wan Qijing. Expression levels and clinical significance of serum miR-497 and miR-383 in patients with esophageal cancer [J]. Journal of International Oncology, 2024, 51(4): 204-209. |
[8] | Yao Yixin, Shen Yulin. Predictive value of serum SOCS3 and TXNIP levels for the prognosis of patients with hepatocellular carcinoma treated with TACE [J]. Journal of International Oncology, 2024, 51(4): 217-222. |
[9] | Sun Weiwei, Yao Xuemin, Wang Pengjian, Wang Jing, Jia Jinghao. Exploration of prognostic factors and nomogram construction for advanced non-small cell lung cancer treated with immunotherapy based on hematologic indexes [J]. Journal of International Oncology, 2024, 51(3): 143-150. |
[10] | Liu Yulan, Jing Haiyan, Sun Jing, Song Wei, Sha Dan. Advances in predicting efficacy and prognostic markers of immunotherapy for gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 175-180. |
[11] | Peng Qin, Cai Yuting, Wang Wei. Advances on KPNA2 in liver cancer [J]. Journal of International Oncology, 2024, 51(3): 181-185. |
[12] | Sun Guobao, Yang Qian, Zhuang Qingchun, Gao Binbin, Sun Xiaogang, Song Wei, Sha Dan. Research progress on the histopathological growth patterns of colorectal liver metastasis [J]. Journal of International Oncology, 2024, 51(2): 114-118. |
[13] | Chen Boguang, Wang Sugui, Zhang Yongjie. Role of serum cholinesterase and inflammatory markers in the prognosis of stage ⅠA -ⅢA breast cancer [J]. Journal of International Oncology, 2024, 51(2): 73-82. |
[14] | Jin Xudong, Chen Zhongjian, Mao Weimin. Research progress on the role of MTAP in malignant mesothelioma [J]. Journal of International Oncology, 2024, 51(2): 99-104. |
[15] | Huang Zhen, Chen Yongshun. Research progress of circulating tumor DNA in the diagnosis and treatment of hepatocellular carcinoma [J]. Journal of International Oncology, 2024, 51(1): 59-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||