Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (5): 290-293.doi: 10.3760/cma.j.cn371439-20220726-00058
• Reviews • Previous Articles Next Articles
Yue Hongyun1, Zhang Baihong2()
Received:
2022-07-26
Revised:
2022-11-16
Online:
2023-05-08
Published:
2023-06-27
Contact:
Zhang Baihong
E-mail:bhzhang1999@126.com
Supported by:
Yue Hongyun, Zhang Baihong. Research progress of immune checkpoint agonist for solid tumor treatments[J]. Journal of International Oncology, 2023, 50(5): 290-293.
"
受体和配体 | 作用机制 | 试验阶段 | 代表药物 |
---|---|---|---|
GITR-GITRL | 促进Teff细胞激活和增殖,减少Treg细胞 | Ⅱ期 | TRX518、MK-1248[ |
OX40-OX40L | 促进Teff细胞和记忆T细胞存活 | Ⅱ期 | MEDI6469[ |
4-1BB-4-1BBL | 促进T细胞增殖和提高线粒体功能 | Ⅰ期 | 乌托鲁单抗、乌瑞芦单抗[ |
ICOS-ICOSL | 促进TCR共刺激和Treg细胞激活 | Ⅰ期 | GSK3359609[ |
CD40-CD40L | 促进T细胞激活和浸润 | Ⅰ期 | CP-870893、Sotigalimab[ |
cGAS-STING | 提高抗肿瘤免疫反应 | 临床前研究 | MSA-2[ |
[1] |
Ribas A. Releasing the brakes on cancer immunotherapy[J]. N Engl J Med, 2015, 373(16): 1490-1492. DOI: 10.1056/NEJMp1510079.
doi: 10.1056/NEJMp1510079 |
[2] |
Mayes PA, Hance KW, Hoos A. The promise and challenges of immune agonist antibody development in cancer[J]. Nat Rev Drug Discov, 2018, 17(7): 509-527. DOI: 10.1038/nrd.2018.75.
doi: 10.1038/nrd.2018.75 pmid: 29904196 |
[3] |
Flemming A. Bispecific agonist boosts anti-tumour T cells via GITR[J]. Nat Rev Immunol, 2022, 22(4): 208. DOI: 10.1038/s41577-022-00708-1.
doi: 10.1038/s41577-022-00708-1 |
[4] |
Chan S, Belmar N, Ho S, et al. An anti-PD-1-GITR-L bispecific agonist induces GITR clustering-mediated T cell activation for cancer immunotherapy[J]. Nat Cancer, 2022, 3(3): 337-354. DOI: 10.1038/s43018-022-00334-9.
doi: 10.1038/s43018-022-00334-9 |
[5] |
Killock D. GITR agonism—combination is key[J]. Nat Rev Clin Oncol, 2019, 16(7): 402. DOI: 10.1038/s41571-019-0221-5.
doi: 10.1038/s41571-019-0221-5 pmid: 31065053 |
[6] |
He C, Maniyar RR, Avraham Y, et al. Therapeutic antibody activation of the glucocorticoid-induced TNF receptor by a clustering mechanism[J]. Sci Adv, 2022, 8(8): eabm4552. DOI: 10.1126/sciadv.abm4552.
doi: 10.1126/sciadv.abm4552 |
[7] |
Geva R, Voskoboynik M, Dobrenkov K, et al. First-in-human phase 1 study of MK-1248, an anti-glucocorticoid-induced tumor necrosis factor receptor agonist monoclonal antibody, as monotherapy or with pembrolizumab in patients with advanced solid tumors[J]. Cancer, 2020, 126(22): 4926-4935. DOI: 10.1002/cncr.33133.
doi: 10.1002/cncr.33133 |
[8] |
Morad G, Helmink BA, Sharma P, et al. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade[J]. Cell, 2021, 184(21): 5309-5337. DOI: 10.1016/j.cell.2021.09.020.
doi: 10.1016/j.cell.2021.09.020 pmid: 34624224 |
[9] |
Duhen R, Ballesteros-Merino C, Frye AK, et al. Neoadjuvant anti-OX40 (MEDI6469) therapy in patients with head and neck squamous cell carcinoma activates and expands antigen-specific tumor-infiltrating T cells[J]. Nat Commun, 2021, 12(1): 1047. DOI: 10.1038/s41467-021-21383-1.
doi: 10.1038/s41467-021-21383-1 pmid: 33594075 |
[10] |
Sagiv-Barfi I, Czerwinski DK, Shree T, et al. Intratumoral immunotherapy relies on B and T cell collaboration[J]. Sci Immunol, 2022, 7(71): eabn5859. DOI: 10.1126/sciimmunol.abn5859.
doi: 10.1126/sciimmunol.abn5859 |
[11] |
Chin SM, Kimberlin CR, Roe-Zurz Z, et al. Structure of the 4-1BB/4-1BBL complex and distinct binding and functional properties of utomilumab and urelumab[J]. Nat Commun, 2018, 9(1): 4679. DOI: 10.1038/s41467-018-07136-7.
doi: 10.1038/s41467-018-07136-7 pmid: 30410017 |
[12] |
Segal NH, He AR, Doi T, et al. Phase Ⅰ study of single-agent utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in patients with advanced cancer[J]. Clin Cancer Res, 2018, 24(8): 1816-1823. DOI: 10.1158/1078-0432.CCR-17-1922.
doi: 10.1158/1078-0432.CCR-17-1922 pmid: 29549159 |
[13] |
You G, Lee Y, Kang YW, et al. B7-H3×4-1BB bispecific antibody augments antitumor immunity by enhancing terminally differentiated CD8+ tumor-infiltrating lymphocytes[J]. Sci Adv, 2021, 7(3): eaax3160. DOI: 10.1126/sciadv.aax3160.
doi: 10.1126/sciadv.aax3160 |
[14] |
Geuijen C, Tacken P, Wang LC, et al. A human CD137×PD-L1 bispecific antibody promotes anti-tumor immunity via context-dependent T cell costimulation and checkpoint blockade[J]. Nat Commun, 2021, 12(1): 4445. DOI: 10.1038/s41467-021-24767-5.
doi: 10.1038/s41467-021-24767-5 pmid: 34290245 |
[15] |
Claus C, Ferrara C, Xu W, et al. Tumor-targeted 4-1BB agonists for combination with T cell bispecific antibodies as off-the-shelf therapy[J]. Sci Transl Med, 2019, 11(496): eaav5989. DOI: 10.1126/scitranslmed.aav5989.
doi: 10.1126/scitranslmed.aav5989 |
[16] |
Peng CW, Huggins MA, Wanhainen KM, et al. Engagement of the costimulatory molecule ICOS in tissues promotes establishment of CD8+ tissue-resident memory T cells[J]. Immunity, 2022, 55(1): 98-114.e5. DOI: 10.1016/j.immuni.2021.11.017.
doi: 10.1016/j.immuni.2021.11.017 |
[17] |
Garber K. Immune agonist antibodies face critical test[J]. Nat Rev Drug Discov, 2020, 19(1): 3-5. DOI: 10.1038/d41573-019-00214-5.
doi: 10.1038/d41573-019-00214-5 pmid: 31907434 |
[18] |
Kvedaraite E, Ginhoux F. Human dendritic cells in cancer[J]. Sci Immunol, 2022, 7(70): eabm9409. DOI: 10.1126/sciimmunol.abm9409.
doi: 10.1126/sciimmunol.abm9409 |
[19] |
Choi Y, Shi Y, Haymaker CL, et al. T-cell agonists in cancer immunotherapy[J]. J Immunother Cancer, 2020, 8(2): e000966. DOI: 10.1136/jitc-2020-000966.
doi: 10.1136/jitc-2020-000966 |
[20] |
Carmona J. Immunity boost against pancreatic cancer[J/OL]. Nat Med. [2021-03-03][2022-05-01]. https://pubmed.ncbi.nlm.nih.gov/33658709/. DOI: 10.1038/d41591-021-00012-w.
doi: 10.1038/d41591-021-00012-w |
[21] |
O'Hara MH, O'Reilly EM, Varadhachary G, et al. CD40 agonistic monoclonal antibody APX005M (sotigalimab) and chemotherapy, with or without nivolumab, for the treatment of metastatic pancreatic adenocarcinoma: an open-label, multicentre, phase 1b study[J]. Lancet Oncol, 2021, 22(1): 118-131. DOI: 10.1016/S1470-2045(20)30532-5.
doi: 10.1016/S1470-2045(20)30532-5 pmid: 33387490 |
[22] |
Bajor DL, Mick R, Riese MJ, et al. Long-term outcomes of a phase Ⅰ study of agonist CD40 antibody and CTLA-4 blockade in patients with metastatic melanoma[J]. Oncoimmunology, 2018, 7(10): e1468956. DOI: 10.1080/2162402X.2018.1468956.
doi: 10.1080/2162402X.2018.1468956 |
[23] |
Salomon R, Rotem H, Katzenelenbogen Y, et al. Bispecific antibodies increase the therapeutic window of CD40 agonists through selective dendritic cell targeting[J]. Nat Cancer, 2022, 3(3): 287-302. DOI: 10.1038/s43018-022-00329-6.
doi: 10.1038/s43018-022-00329-6 |
[24] |
Maskalenko NA, Zhigarev D, Campbell KS. Harnessing natural killer cells for cancer immunotherapy: dispatching the first responders[J]. Nat Rev Drug Discov, 2022, 21(8): 559-577. DOI: 10.1038/s41573-022-00413-7.
doi: 10.1038/s41573-022-00413-7 pmid: 35314852 |
[25] |
Wolf NK, Blaj C, Picton LK, et al. Synergy of a STING agonist and an IL-2 superkine in cancer immunotherapy against MHC Ⅰ-deficient and MHC Ⅰ+tumors[J]. Proc Natl Acad Sci U S A, 2022, 119(22): e2200568119. DOI: 10.1073/pnas.2200568119.
doi: 10.1073/pnas.2200568119 |
[26] |
Pan BS, Perera SA, Piesvaux JA, et al. An orally available non-nucleotide STING agonist with antitumor activity[J]. Science, 2020, 369(6506): eaba6098. DOI: 10.1126/science.aba6098.
doi: 10.1126/science.aba6098 |
[27] |
Gajewski TF, Higgs EF. Immunotherapy with a sting[J]. Science, 2020, 369(6506): 921-922. DOI: 10.1126/science.abc6622.
doi: 10.1126/science.abc6622 pmid: 32820113 |
[28] |
Gong N, Mitchell MJ. Lipid nanodiscs give cancer a STING[J]. Nat Mater, 2022, 21(6): 616-617. DOI: 10.1038/s41563-022-01270-w.
doi: 10.1038/s41563-022-01270-w |
[29] |
Dane EL, Belessiotis-Richards A, Backlund C, et al. STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity[J]. Nat Mater, 2022, 21(6): 710-720. DOI: 10.1038/s41563-022-01251-z.
doi: 10.1038/s41563-022-01251-z |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei. Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study [J]. Journal of International Oncology, 2024, 51(6): 326-331. |
[3] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[4] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[5] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[6] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[7] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[8] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[9] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[10] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[11] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[12] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[13] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[14] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[15] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||