
国际肿瘤学杂志 ›› 2021, Vol. 48 ›› Issue (3): 189-192.doi: 10.3760/cma.j.cn371439-20200619-00038
• 综述 • 上一篇
收稿日期:2020-06-19
									
				
											修回日期:2020-09-17
									
				
									
				
											出版日期:2021-03-08
									
				
											发布日期:2021-03-25
									
			通讯作者:
					刘文君
											E-mail:lwjlyfy@qq.com
												基金资助:
        
               		Chen Xi, Mu Dan, Yan Qin, Liu Wenjun*(
)
			  
			
			
			
                
        
    
Received:2020-06-19
									
				
											Revised:2020-09-17
									
				
									
				
											Online:2021-03-08
									
				
											Published:2021-03-25
									
			Contact:
					Liu Wenjun   
											E-mail:lwjlyfy@qq.com
												Supported by:摘要:
骨髓微环境(BMM)是白血病细胞赖以生存的环境,包含有干细胞、骨髓基质细胞以及丰富的细胞因子,可以调控白血病细胞分化、增殖等活动。BMM对白血病细胞分化的调控是一个复杂的过程,可以作用于不同的靶点和信号通路,主要包括低氧诱导因子、整合素、Notch及Wnt/β-catenin等信号通路途径。通过研究BMM与白血病细胞分化的关系,找到诱导白血病分化的通路和靶点将为白血病的治疗找到新方向。
陈曦, 母丹, 严钦, 刘文君. 骨髓微环境与白血病细胞分化[J]. 国际肿瘤学杂志, 2021, 48(3): 189-192.
Chen Xi, Mu Dan, Yan Qin, Liu Wenjun. Bone marrow microenvironment and differentiation of leukemia cells[J]. Journal of International Oncology, 2021, 48(3): 189-192.
| [1] | Cheng CW, Yilmaz ÖH. Starving leukemia to induce differentiation[J]. Nat Med, 2017,23(1):14-15. DOI: 10.1038/nm.4259. | 
| [2] |  
											  Deynoux M, Sunter N, Hérault O, et al. Hypoxia and hypoxia-inducible factors in leukemia[J]. Front Oncol, 2016,6:41. DOI: 10.3389/fonc.2016.00041. 
											 												 doi: 10.3389/fonc.2016.00041 pmid: 26955619  | 
										
| [3] | Ben El Makki A, Mahtat EM, Kheyi J, et al. A rare case of perimyocarditis induced by all-trans retinoic acid administration during induction treatment of acute promyelocytic leukemia[J]. Med Pharm Rep, 2019,92(4):418-420. DOI: 10.15386/mpr-1229. | 
| [4] |  
											  McCulloch D, Brown C, Iland H. Retinoic acid and arsenic trioxide in the treatment of acute promyelocytic leukemia: current perspectives[J]. Onco Targets Ther, 2017,10:1585-1601. DOI: 10.2147/OTT.S100513. 
											 												 pmid: 28352191  | 
										
| [5] | Cha YJ, Koo JS. Roles of omental and bone marrow adipocytes in tumor biology[J]. Adipocyte, 2019,8(1):304-317. DOI: 10.1080/21623945.2019.1643189. | 
| [6] |  
											  Fu JF, Liang ST, Huang YJ, et al. Cooperation of MLL/AF10(OM-LZ) with PTPN11 activating mutation induced monocytic leukemia with a shorter latency in a mouse bone marrow transplantation model[J]. Int J Cancer, 2017,140(5):1159-1172. DOI: 10.1002/ijc.30515. 
											 												 pmid: 27859216  | 
										
| [7] |  
											  Duarte D, Hawkins ED, Lo Celso C. The interplay of leukemia cells and the bone marrow microenvironment[J]. Blood, 2018,131(14):1507-1511. DOI: 10.1182/blood-2017-12-784132. 
											 												 pmid: 29487069  | 
										
| [8] | Seipel K, Schmitter K, Bacher U, et al. Rationale for a combination therapy consisting of MCL1- and MEK-inhibitors in acute myeloid leukemia[J]. Cancers (Basel), 2019,11(11):1779. DOI: 10.3390/cancers11111779. | 
| [9] |  
											  Chan SM. The making of a leukemic stem cell: a novel role for IKZF2 in AML stemness and differentiation[J]. Cell Stem Cell, 2019,24(1):5-6. DOI: 10.1016/j.stem.2018.12.007. 
											 												 doi: 10.1016/j.stem.2018.12.007 pmid: 30609399  | 
										
| [10] |  
											  Verhagen HJMP, Van Gils N, Martiañez T, et al. IGFBP7 induces differentiation and loss of survival of human acute myeloid leukemia stem cells without affecting normal hematopoiesis[J]. Cell Rep, 2018,25(11):3021-3035. DOI: 10.1016/j.celrep.2018.11.062. 
											 												 doi: 10.1016/j.celrep.2018.11.062 pmid: 30540936  | 
										
| [11] |  
											  Sterner RM, Kremer KN, Dudakovic A, et al. Tissue-nonspecific alkaline phosphatase is required for MC3T3 osteoblast-mediated protection of acute myeloid leukemia cells from apoptosis[J]. J Immunol, 2018,201(3):1086-1096. DOI: 10.4049/jimmunol.1800174. 
											 												 pmid: 29914885  | 
										
| [12] | Gibbs BF, Yasinska IM, Oniku AE, et al. Effects of stem cell factor on hypoxia-inducible factor 1 alpha accumulation in human acute myeloid leukaemia and LAD2 mast cells[J]. PLoS One, 2011,6(7):e22502. DOI: 10.1371/journal.pone.0022502. | 
| [13] |  
											  Zhe N, Chen S, Zhou Z, et al. HIF-1α inhibition by 2-methoxyestradiol induces cell death via activation of the mitochondrial apoptotic pathway in acute myeloid leukemia[J]. Cancer Biol Ther, 2016,17(6):625-634. DOI: 10.1080/15384047.2016.1177679. 
											 												 pmid: 27082496  | 
										
| [14] |  
											  Serra S, Vaisitti T, Audrito V, et al. Adenosine signaling mediates hypoxic responses in the chronic lymphocytic leukemia microenvironment[J]. Blood Adv, 2016,1(1):47-61. DOI: 10.1182/bloodadvances.2016000984. 
											 												 doi: 10.1182/bloodadvances.2016000984 pmid: 29296695  | 
										
| [15] |  
											  Griggio V, Vitale C, Todaro M, et al. HIF-1α is over-expressed in leukemic cells from TP53-disrupted patients and is a promising therapeutic target in chronic lymphocytic leukemia[J]. Haematologica, 2020,105(4):1042-1054. DOI: 10.3324/haematol.2019.217430. 
											 												 doi: 10.3324/haematol.2019.217430 pmid: 31289209  | 
										
| [16] |  
											  Valsecchi R, Coltella N, Belloni D, et al. HIF-1α regulates the interaction of chronic lymphocytic leukemia cells with the tumor microenvironment[J]. Blood, 2016,127(16):1987-1997. DOI: 10.1182/blood-2015-07-657056. 
											 												 doi: 10.1182/blood-2015-07-657056 pmid: 26825709  | 
										
| [17] |  
											  Zucchetto A, Tissino E, Chigaev A, et al. Methods for investigating VLA-4 (CD49d/CD29) expression and activation in chronic lymphocytic leukemia and its clinical applications[J]. Methods Mol Biol, 2019,1881:101-112. DOI: 10.1007/978-1-4939-8876-1_8. 
											 												 pmid: 30350200  | 
										
| [18] | Gutjahr JC, Bayer E, Yu XB, et al. CD44 engagement enhances acute myeloid leukemia cell adhesion to the bone marrow microenvironment by increasing VLA-4 avidity[J]. Haematologica, 2020, haematol.2019.231944. DOI: 10.3324/haematol.2019.231944. | 
| [19] | 孔庆琳, 安曦洲, 管贤敏, 等. β整合素家族在儿童急性T淋巴细胞白血病的表达及其临床意义[J]. 中国当代儿科杂志, 2017,19(6):620-626. DOI: 10.7499/j.issn.1008-8830.2017.06.003. | 
| [20] |  
											  Dal Bo M, Tissino E, Benedetti D, et al. Functional and clinical significance of the integrin alpha chain CD49d expression in chronic lymphocytic leukemia[J]. Curr Cancer Drug Targets, 2016,16(8):659-668. DOI: 10.2174/1568009616666160809102219. 
											 												 pmid: 27514846  | 
										
| [21] |  
											  McCarter AC, Wang Q, Chiang M. Notch in leukemia[J]. Adv Exp Med Biol, 2018,1066:355-394. DOI: 10.1007/978-3-319-89512-3_18. 
											 												 pmid: 30030836  | 
										
| [22] |  
											  Ciciarello M, Corradi G, Loscocco F, et al. The yin and yang of the bone marrow microenvironment: pros and cons of mesenchymal stromal cells in acute myeloid leukemia[J]. Front Oncol, 2019,9:1135-1143. DOI: 10.3389/fonc.2019.01135. 
											 												 doi: 10.3389/fonc.2019.01135 pmid: 31709192  | 
										
| [23] | Bellavia D, Palermo R, Felli MP, et al. Notch signaling as a therapeutic target for acute lymphoblastic leukemia[J]. Expert Opin on Ther Targets, 2018,22(4):331-342. DOI: 10.1080/14728222.2018.1451840. | 
| [24] |  
											  Xiu Y, Dong Q, Fu L, et al. Coactivation of NF-κB and Notch signaling is sufficient to induce B cell transformation and enables B-myeloid conversion[J]. Blood, 2020,135(2):108-120. DOI: 10.1182/blood.2019001438. 
											 												 doi: 10.1182/blood.2019001438 pmid: 31697816  | 
										
| [25] |  
											  Takam Kamga P, Bassi G, Cassaro A, et al. Notch signalling drives bone marrow stromal cell-mediated chemoresistance in acute myeloid leukemia[J]. Oncotarget, 2016,7(16):21713-21727. DOI: 10.18632/oncotarget.7964. 
											 												 doi: 10.18632/oncotarget.7964 pmid: 26967055  | 
										
| [26] |  
											  Bill M, Pathmanathan A, Karunasiri M, et al. EGFL7 antagonizes Notch signaling and represents a novel therapeutic target in acute myeloid leukemia[J]. Clin Cancer Res, 2020,26(3):669-678. DOI: 10.1158/1078-0432.CCR-19-2479. 
											 												 pmid: 31672772  | 
										
| [27] |  
											  Mangolini M, Götte F, Moore A, et al. Notch2 controls non-autonomous Wnt-signalling in chronic lymphocytic leukaemia[J]. Nat Commun, 2018,9(1):3839. DOI: 10.1038/s41467-018-06069-5. 
											 												 doi: 10.1038/s41467-018-06069-5 pmid: 30242258  | 
										
| [28] |  
											  Wu W, Nie L, Zhang L, et al. The Notch pathway promotes NF-κB activation through Asb2 in T cell acute lymphoblastic leukemia cells[J]. Cell Mol Biol Lett, 2018,23:37. DOI: 10.1186/s11658-018-0102-4. 
											 												 pmid: 30116272  | 
										
| [29] | Almars A, Chondrou PS, Onyido EK, et al. Increased FLYWCH1 expression is negatively correlated with Wnt/β-catenin target gene expression in acute myeloid leukemia cells[J]. Int J Mol Sci, 2019,20(11):2739. | 
| [30] |  
											  Zhou H, Mak PY, Mu H, et al. Combined inhibition of β-catenin and Bcr-Abl synergistically targets tyrosine kinase inhibitor-resistant blast crisis chronic myeloid leukemia blasts and progenitors in vitro and in vivo[J]. Leukemia, 2017, (10):2065-2074. DOI: 10.1038/leu.2017.87. 
											 												 doi: 10.1038/leu.2017.87 pmid: 28321124  | 
										
| [31] |  
											  Huang B, He A, Zhang P, et al. Targeted silencing of genes related to acute monocytic leukaemia by CpG(B)-MLAA-34 siRNA conjugates[J]. J Drug Target, 2020,28(5):516-524. DOI: 10.1080/1061186X.2019.1689397. 
											 												 doi: 10.1080/1061186X.2019.1689397 pmid: 31718329  | 
										
| [32] |  
											  Jiang X, Mak PY, Mu H, et al. Disruption of Wnt/β-catenin exerts antileukemia activity and synergizes with FLT3 inhibition in FLT3-mutant acute myeloid leukemia[J]. Clin Cancer Res, 2018,24(10):2417-2429. DOI: 10.1158/1078-0432.CCR-17-1556. 
											 												 doi: 10.1158/1078-0432.CCR-17-1556 pmid: 29463558  | 
										
| [33] |  
											  Yang S, Gu Y, Wang G, et al. HMGA2 regulates acute myeloid leukemia progression and sensitivity to daunorubicin via Wnt/β-catenin signaling[J]. Int J Mol Med, 2019,44(2):427-436. DOI: 10.3892/ijmm.2019.4229. 
											 												 doi: 10.3892/ijmm.2019.4229 pmid: 31173171  | 
										
| [1] | 许凤琳, 吴刚. EBV在鼻咽癌肿瘤免疫微环境和免疫治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 359-363. | 
| [2] | 傅旖, 马辰莺, 张露, 周菊英. 生境分析在恶性肿瘤影像组学中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(5): 292-297. | 
| [3] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙. 肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. | 
| [4] | 任露, 谢晓丽, 张坤, 王丽娟. 双氢青蒿素联合卡非佐米对多发性骨髓瘤细胞活性、增殖、凋亡的影响及机制研究[J]. 国际肿瘤学杂志, 2024, 51(3): 129-136. | 
| [5] | 岳红云, 张百红. 肿瘤的分化治疗[J]. 国际肿瘤学杂志, 2024, 51(2): 109-113. | 
| [6] | 滕远, 李莉娟, 张连生. MCL-1及其抑制剂在血液恶性肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 119-122. | 
| [7] | 刘筱迪, 苏剑飞, 张静娴, 卫雪芹, 贾英杰. 髓源性抑制细胞在肿瘤血管生成中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(1): 50-54. | 
| [8] | 顾花艳, 朱腾, 郭贵龙. 乳房微生物群与乳腺癌:现状与未来[J]. 国际肿瘤学杂志, 2024, 51(1): 55-58. | 
| [9] | 王军, 贾秀红. TGF-β/Smad信号通路与急性白血病[J]. 国际肿瘤学杂志, 2023, 50(8): 498-502. | 
| [10] | 王婷, 李文倩, 解友邦. 低氧与急性髓系白血病细胞氧感受通路的相关性[J]. 国际肿瘤学杂志, 2023, 50(8): 503-507. | 
| [11] | 邢明泉, 葛洪峰, 张丽侠, 韩浩, 吴维霞. 疑似免疫性血小板减少症的侵袭性自然杀伤细胞白血病1例[J]. 国际肿瘤学杂志, 2023, 50(5): 318-320. | 
| [12] | 许萌, 姜伟, 朱海涛, 曹雄锋. 癌相关成纤维细胞在肿瘤放疗抵抗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 227-230. | 
| [13] | 丁浩, 应劲涛, 付茂勇. CAR-T在食管鳞状细胞癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 231-235. | 
| [14] | 曹梦清, 徐志勇, 施毓婷, 王凯. 三级淋巴结构在肿瘤免疫微环境调节和抗肿瘤治疗中的作用[J]. 国际肿瘤学杂志, 2023, 50(3): 169-173. | 
| [15] | 徐良富, 李袁飞. MSS型结直肠癌肿瘤微环境及免疫联合治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(3): 186-190. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||