国际肿瘤学杂志 ›› 2024, Vol. 51 ›› Issue (2): 119-122.doi: 10.3760/cma.j.cn371439-20230612-00018
收稿日期:
2023-06-12
修回日期:
2023-12-14
出版日期:
2024-02-08
发布日期:
2024-04-03
通讯作者:
张连生,Email:基金资助:
Teng Yuan, Li Lijuan(), Zhang Liansheng()
Received:
2023-06-12
Revised:
2023-12-14
Online:
2024-02-08
Published:
2024-04-03
Contact:
Zhang Liansheng,Email:Supported by:
摘要:
髓细胞白血病1(MCL-1)是一种抗凋亡蛋白,在促进多发性骨髓瘤、急性髓系白血病和非霍奇金淋巴瘤等的细胞存活中起关键作用。MCL-1在多种血液恶性肿瘤中高表达,是导致血液恶性肿瘤患者预后不良及化疗耐药的重要因素之一,因此,MCL-1是血液恶性肿瘤的重要治疗靶点。几种MCL-1抑制剂已进入临床试验阶段,包括S63845、AZD5991、S64315、AMG-176和AMG-397。用于血液恶性肿瘤的治疗方案中既有MCL-1抑制剂单药治疗,也有与B细胞淋巴瘤2抑制剂或免疫调节药物联合治疗,均表明MCL-1抑制剂可能是血液肿瘤靶向治疗的突破口。
滕远, 李莉娟, 张连生. MCL-1及其抑制剂在血液恶性肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 119-122.
Teng Yuan, Li Lijuan, Zhang Liansheng. Progress of MCL-1 and its inhibitors in hematologic malignancies[J]. Journal of International Oncology, 2024, 51(2): 119-122.
[1] |
Gupta VA, Ackley J, Kaufman JL, et al. BCL2 family inhibitors in the biology and treatment of multiple myeloma[J]. Blood Lymphat Cancer, 2021, 11: 11-24. DOI: 10.2147/BLCTT.S245191.
pmid: 33737856 |
[2] | Wei AH, Roberts AW, Spencer A, et al. Targeting MCL-1 in hematologic malignancies: rationale and progress[J]. Blood Rev, 2020, 44: 100672. DOI: 10.1016/j.blre.2020.100672. |
[3] |
Slomp A, Moesbergen LM, Gong JN, et al. Multiple myeloma with 1q21 amplification is highly sensitive to MCL-1 targeting[J]. Blood Adv, 2019, 3(24): 4202-4214. DOI: 10.1182/bloodadvances.2019000702.
pmid: 31856269 |
[4] |
Gupta VA, Matulis SM, Conage-Pough JE, et al. Bone marrow microenvironment-derived signals induce Mcl-1 dependence in multiple myeloma[J]. Blood, 2017, 129(14): 1969-1979. DOI: 10.1182/blood-2016-10-745059.
pmid: 28151428 |
[5] | Algarín EM, Quwaider D, Campos-Laborie FJ, et al. Stroma-mediated resistance to S63845 and venetoclax through MCL-1 and BCL-2 expression changes induced by miR-193b-3p and miR-21-5p dysregulation in multiple myeloma[J]. Cells, 2021, 10(3): 559. DOI: 10.3390/cells10030559. |
[6] |
Gomez-Bougie P, Maiga S, Tessoulin B, et al. BH3-mimetic toolkit guides the respective use of BCL2 and MCL1 BH3-mimetics in myeloma treatment[J]. Blood, 2018, 132(25): 2656-2669. DOI: 10.1182/blood-2018-03-836718.
pmid: 30309889 |
[7] | Algarín EM, Díaz-Tejedor A, Mogollón P, et al. Preclinical evaluation of the simultaneous inhibition of MCL-1 and BCL-2 with the combination of S63845 and venetoclax in multiple myeloma[J]. Haematologica, 2020, 105(3): e116-e120. DOI: 10.3324/haematol.2018.212308. |
[8] | Tagoug A, Safra I. The impact of panobinostat on cell death in combination with S63845 in multiple myeloma cells[J]. Indian J Hematol Blood Transfus, 2023, 39(2): 245-257. DOI: 10.1007/s12288-022-01584-4. |
[9] |
Szlávik Z, Ondi L, Csékei M, et al. Structure-guided discovery of a selective Mcl-1 inhibitor with cellular activity[J]. J Med Chem, 2019, 62(15): 6913-6924. DOI: 10.1021/acs.jmedchem.9b00134.
pmid: 31339316 |
[10] | ClinicalTrials. gov. Phase Ⅰ study of MIK665, a Mcl-1 inhibitor, in patients with refractory or relapsed lymphoma or multiple myeloma[EB/OL]. (2021-08-03)[2023-05-18]. https://classic.clinicaltrials.gov/ct2/show/NCT02992483. |
[11] |
Kadia TM, Kantarjian HM, Konopleva M. Myeloid cell leukemia-1 dependence in acute myeloid leukemia: a novel approach to patient therapy[J]. Oncotarget, 2019, 10(12): 1250-1265. DOI: 10.18632/oncotarget.26579.
pmid: 30815228 |
[12] |
Ewald L, Dittmann J, Vogler M, et al. Side-by-side comparison of BH3-mimetics identifies MCL-1 as a key therapeutic target in AML[J]. Cell Death Dis, 2019, 10(12): 917. DOI: 10.1038/s41419-019-2156-2.
pmid: 31801941 |
[13] | Zhang Q, Riley-Gillis B, Han L, et al. Activation of RAS/MAPK pathway confers MCL-1 mediated acquired resistance to BCL-2 inhibitor venetoclax in acute myeloid leukemia[J]. Signal Transduct Target Ther, 2022, 7(1): 51. DOI: 10.1038/s41392-021-00870-3. |
[14] |
Wang Q, Hao S. A-1210477, a selective MCL-1 inhibitor, overcomes ABT-737 resistance in AML[J]. Oncol Lett, 2019, 18(5): 5481-5489. DOI: 10.3892/ol.2019.10891.
pmid: 31612056 |
[15] |
Tron AE, Belmonte MA, Adam A, et al. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia[J]. Nat Commun, 2018, 9(1): 5341. DOI: 10.1038/s41467-018-07551-w.
pmid: 30559424 |
[16] | Liu S, Qiao X, Wu S, et al. c-Myc plays a critical role in the antileukemic activity of the Mcl-1-selective inhibitor AZD5991 in acute myeloid leukemia[J]. Apoptosis, 2022, 27(11/12): 913-928. DOI: 10.1007/s10495-022-01756-7. |
[17] | Carter BZ, Mak PY, Tao W, et al. Targeting MCL-1 dysregulates cell metabolism and leukemia-stroma interactions and resensitizes acute myeloid leukemia to BCL-2 inhibition[J]. Haematologica, 2022, 107(1): 58-76. DOI: 10.3324/haematol.2020.260331. |
[18] | ClinicalTrials. gov. Study of AZD5991 alone or in combination with venetoclax in relapsed or refractory haematologic malignancies[EB/OL]. (2022-09-23)[2023-05-18]. https://clinicaltrials.gov/study/NCT03218683?tab=history&a=36. |
[19] |
Wang Y, Wang D, Wang Y, et al. Synergistic activity and mechanism of cytarabine and MCL-1 inhibitor AZD5991 against acute myeloid leukemia[J]. Neoplasma, 2023, 70(2): 287-293. DOI: 10.4149/neo_2023_221217N1185.
pmid: 36812234 |
[20] | Al-Odat O, von Suskil M, Chitren R, et al. Mcl-1 inhibition: ma-naging malignancy in multiple myeloma[J]. Front Pharmacol, 2021, 12: 699629. DOI: 10.3389/fphar.2021.699629. |
[21] |
Caenepeel S, Brown SP, Belmontes B, et al. AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies[J]. Cancer Discov, 2018, 8(12): 1582-1597. DOI: 10.1158/2159-8290.CD-18-0387.
pmid: 30254093 |
[22] | ClinicalTrials. gov. AMG 176 first in human trial in participants with relapsed or refractory multiple myeloma and participants with relapsed or refractory acute myeloid leukemia[EB/OL]. (2016-02-05)[2023-05-18]. https://classic.clinicaltrials.gov/ct2/show/NCT02675452. |
[23] | Hormi M, Birsen R, Belhadj M, et al. Pairing MCL-1 inhibition with venetoclax improves therapeutic efficiency of BH3-mimetics in AML[J]. Eur J Haematol, 2020, 105(5): 588-596. DOI: 10.1111/ejh.13492. |
[24] | Liu F, Zhao Q, Su Y, et al. Cotargeting of Bcl-2 and Mcl-1 shows promising antileukemic activity against AML cells including those with acquired cytarabine resistance[J]. Exp Hematol, 2022, 105: 39-49. DOI: 10.1016/j.exphem.2021.10.006. |
[25] | ClinicalTrials. gov. Phase Ⅰ dose escalation study of intravenously administered S64315 in combination with orally administered venetoclax in patients with acute myeloid leukaemia[EB/OL]. (2023-07-25)[2023-08-22]. https://classic.clinicaltrials.gov/ct2/show/NCT03672695. |
[26] | Phillips DC, Xiao Y, Lam LT, et al. Loss in MCL-1 function sensitizes non-Hodgkin's lymphoma cell lines to the BCL-2-selective inhibitor venetoclax (ABT-199)[J]. Blood Cancer J, 2016, 6(3): e403. DOI: 10.1038/bcj.2016.12. |
[27] | Ennishi D, Mottok A, Ben-Neriah S, et al. Genetic profiling of MYC and BCL2 in diffuse large B-cell lymphoma determines cell-of-origin-specific clinical impact[J]. Blood, 2017, 129(20): 2760-2770. DOI: 10.1182/blood-2016-11-747022. |
[28] | Lasater EA, Amin DN, Bannerji R, et al. Targeting MCL-1 and BCL-2 with polatuzumab vedotin and venetoclax overcomes treatment resistance in R/R non-Hodgkin lymphoma: results from preclinical models and a phase Ⅰb study[J]. Am J Hematol, 2023, 98(3): 449-463. DOI: 10.1002/ajh.26809. |
[29] |
Fernández-Marrero Y, Spinner S, Kaufmann T, et al. Survival control of malignant lymphocytes by anti-apoptotic MCL-1[J]. Leukemia, 2016, 30(11): 2152-2159. DOI: 10.1038/leu.2016.213.
pmid: 27479182 |
[30] | Liu T, Lam V, Thieme E, et al. Pharmacologic targeting of Mcl-1 induces mitochondrial dysfunction and apoptosis in B-cell lymphoma cells in a TP53- and BAX-dependent manner[J]. Clin Cancer Res, 2021, 27(17): 4910-4922. DOI: 10.1158/1078-0432.CCR-21-0464. |
[31] | ClinicalTrials. gov. A study of venetoclax and AMG 176 in patients with relapsed/refractory hematologic malignancies[EB/OL]. (2021-12-07)[2023-04-07]. https://classic.clinicaltrials.gov/ct2/show/NCT03797261. |
[32] |
Brennan MS, Chang C, Tai L, et al. Humanized Mcl-1 mice enable accurate preclinical evaluation of MCL-1 inhibitors destined for clinical use[J]. Blood, 2018, 132(15): 1573-1583. DOI: 10.1182/blood-2018-06-859405.
pmid: 30139826 |
[33] | ClinicalTrials. gov. Safety, tolerability, pharmacokinetics and efficacy of AMG 397 in subjects with selected relapsed or refractory hematological malignancies[EB/OL]. (2023-04-12)[2023-05-18]. https://classic.clinicaltrials.gov/ct2/show/NCT03465540. |
[34] |
Yi X, Sarkar A, Kismali G, et al. AMG-176, an Mcl-1 antagonist, shows preclinical efficacy in chronic lymphocytic leukemia[J]. Clin Cancer Res, 2020, 26(14): 3856-3867. DOI: 10.1158/1078-0432.CCR-19-1397.
pmid: 31937611 |
[35] | ClinicalTrials. gov. Phase Ⅰ study of S64315 administred intravenously in patients with acute myeloid leukaemia or myelodysplastic syndrome[EB/OL]. (2022-05-18)[2023-05-18]. https://classic.clinicaltrials.gov/ct2/show/NCT02979366. |
[1] | 萨蔷, 徐航程, 王佳玉. 乳腺癌免疫治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 227-234. |
[2] | 钟楠, 王淡瑜, 周欢欢, 刘宁, 戴纬, 刘黎琼, 郭智. CD30单抗联合PD-1抑制剂治疗复发难治性霍奇金淋巴瘤的疗效与安全性[J]. 国际肿瘤学杂志, 2024, 51(4): 245-248. |
[3] | 钱晓涛, 石子宜, 胡格. Ⅲ~ⅣA期食管鳞状细胞癌根治性放化疗后行免疫检查点抑制剂维持治疗的真实世界临床研究[J]. 国际肿瘤学杂志, 2024, 51(3): 151-156. |
[4] | 解淑萍, 孙亚红, 汪超. 早期肿瘤标志物联合NLR、PLR预测胃癌免疫治疗疗效[J]. 国际肿瘤学杂志, 2024, 51(3): 157-165. |
[5] | 陈欣祎, 翁一鸣, 魏家燕, 王劲松, 彭敏. 免疫检查点抑制剂在复发或转移性头颈部鳞状细胞癌治疗中的进展[J]. 国际肿瘤学杂志, 2023, 50(9): 553-557. |
[6] | 邓隽军, 赵大勇, 李淼. 免疫检查点抑制剂在非小细胞肺癌治疗中的不良反应及危险因素[J]. 国际肿瘤学杂志, 2023, 50(9): 564-568. |
[7] | 张露, 蒋华, 林州, 马辰莺, 徐晓婷, 王利利, 周菊英. 免疫检查点抑制剂治疗复发转移性宫颈癌的疗效及预后分析[J]. 国际肿瘤学杂志, 2023, 50(8): 475-483. |
[8] | 邵慧芳, 王学红, 芦永福. CST1在胃癌进展中的作用机制及临床意义[J]. 国际肿瘤学杂志, 2023, 50(8): 489-492. |
[9] | 王钧, 荣磊, 黄靖, 孟景晔, 郭智. 经支气管肺活检及肺泡灌洗在血液肿瘤患者肺部并发症中的诊断价值[J]. 国际肿瘤学杂志, 2023, 50(7): 419-424. |
[10] | 过慈良, 江春平, 吴俊华. 肠道菌群与肿瘤免疫治疗[J]. 国际肿瘤学杂志, 2023, 50(7): 432-436. |
[11] | 刘利, 朱思齐, 孙梦颖, 何敬东. PARP抑制剂在小细胞肺癌靶向治疗中的进展[J]. 国际肿瘤学杂志, 2023, 50(6): 368-372. |
[12] | 顾安琴, 龙金华, 金风. 鼻咽癌免疫治疗的临床研究进展[J]. 国际肿瘤学杂志, 2023, 50(5): 299-303. |
[13] | 王雅倩, 杜逸玮, 王兴, 贾军梅. 小细胞肺癌免疫治疗预后预测指标研究进展[J]. 国际肿瘤学杂志, 2023, 50(3): 179-182. |
[14] | 姬薇, 关泉林, 陈雅蕊, 焦福智, 罗倩文. 血脂水平与胃癌的相关性[J]. 国际肿瘤学杂志, 2023, 50(3): 183-185. |
[15] | 曹晓辉, 于荭, 李万湖. 基于CT的影像组学分析在预测和鉴别治疗相关性肺炎中的应用[J]. 国际肿瘤学杂志, 2023, 50(2): 107-111. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||