[1] |
Yi M, Li A, Zhou L, et al. The global burden and attributable risk factor analysis of acute myeloid leukemia in 195 countries and territories from 1990 to 2017: estimates based on the global burden of disease study 2017[J]. J Hematol Oncol, 2020, 13(1): 72. DOI:10.1186/s13045-020-00908-z.
|
[2] |
Kim HS, Ha HS, Kim DH, et al. O2 variant chip to simulate site-specific skeletogenesis from hypoxic bone marrow[J]. Sci Adv, 2023, 9(12): eadd4210. DOI:10.1126/sciadv.add4210.
|
[3] |
Kessler T, Koschmieder S, Schliemann C, et al. Phase Ⅱ clinical trial of pazopanib in patients with acute myeloid leukemia (AML), relapsed or refractory or at initial diagnosis without an intensive treatment option (PazoAML)[J]. Ann Hematol, 2019, 98(6): 1393-1401. DOI:10.1007/s00277-019-03651-9.
|
[4] |
Christodoulou C, Spencer JA, Yeh SA, et al. Live-animal imaging of native haematopoietic stem and progenitor cells[J]. Nature, 2020, 578(7794): 278-283. DOI:10.1038/s41586-020-1971-z.
|
[5] |
Yao Y, Li F, Huang J, et al. Leukemia stem cell-bone marrow microenvironment interplay in acute myeloid leukemia development[J]. Exp Hematol Oncol, 2021, 10(1): 39. DOI:10.1186/s40164-021-00233-2.
pmid: 34246314
|
[6] |
Drolle H, Wagner M, Vasold J, et al. Hypoxia regulates proliferation of acute myeloid leukemia and sensitivity against chemotherapy[J]. Leuk Res, 2015, 39(7): 779-785. DOI:10.1016/j.leukres.2015.04.019.
|
[7] |
Li Y, Zhao L, Li XF. The hypoxia-activated prodrug TH-302: exploiting hypoxia in cancer therapy[J]. Front Pharmacol, 2021, 12: 636892. DOI:10.3389/fphar.2021.636892.
|
[8] |
李凡, 何海萍, 张丽华, 等. 骨髓增生异常综合征患者来源间充质干细胞的最新研究进展[J]. 中国实验血液学杂志, 2022, 30(4): 1286-1290. DOI:10.19746/j.cnki.issn1009-2137.2022.04.051.
|
[9] |
Deynoux M, Sunter N, Hérault O, et al. Hypoxia and hypoxia-inducible factors in leukemias[J]. Front Oncol, 2016, 6: 41. DOI:10.3389/fonc.2016.00041.
pmid: 26955619
|
[10] |
陈曦, 母丹, 严钦, 等. 骨髓微环境与白血病细胞分化[J]. 国际肿瘤学杂志, 2021, 48(3): 189-192. DOI:10.3760/cma.j.cn371439-20200619-00038.
|
[11] |
Ruan Y, Kim HN, Ogana H, et al. Wnt signaling in leukemia and its bone marrow microenvironment[J]. Int J Mol Sci, 2020, 21(17): 6247. DOI:10.3390/ijms21176247.
|
[12] |
Gruszka AM, Valli D, Alcalay M. Wnt signalling in acute myeloid leukaemia[J]. Cells, 2019, 8(11): 1403. DOI:10.3390/cells8111403.
|
[13] |
Bruno S, Mancini M, De Santis S, et al. The role of hypoxic bone marrow microenvironment in acute myeloid leukemia and future therapeutic opportunities[J]. Int J Mol Sci, 2021, 22(13): 6857. DOI:10.3390/ijms22136857.
|
[14] |
Jiang M, He G, Wang J, et al. Hypoxia induces inflammatory microenvironment by priming specific macrophage polarization and modifies LSC behaviour via VEGF-HIF1α signalling[J]. Transl Pediatr, 2021, 10(7): 1792-1804. DOI:10.21037/tp-21-86.
pmid: 34430427
|
[15] |
Kim JW, Tchernyshyov I, Semenza GL, et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia[J]. Cell Metab, 2006, 3(3): 177-185. DOI:10.1016/j.cmet.2006.02.002.
|
[16] |
Morganti C, Cabezas-Wallscheid N, Ito K. Metabolic regulation of hematopoietic stem cells[J]. Hemasphere, 2022, 6(7): e740. DOI:10.1097/HS9.0000000000000740.
pmid: 35785147
|
[17] |
He P, Lei J, Zou LX, et al. Effects of hypoxia on DNA hydroxymethylase Tet methylcytosine dioxygenase 2 in a KG-1 human acute myeloid leukemia cell line and its mechanism[J]. Oncol Lett, 2021, 22(4): 692. DOI:10.3892/ol.2021.12953.
pmid: 34457047
|
[18] |
Abdul-Aziz AM, Shafat MS, Sun Y, et al. HIF1α drives chemokine factor pro-tumoral signaling pathways in acute myeloid leukemia[J]. Oncogene, 2018, 37(20): 2676-2686. DOI:10.1038/s41388-018-0151-1.
pmid: 29487418
|
[19] |
Abdul-Aziz AM, Shafat MS, Mehta TK, et al. MIF-induced stromal PKCβ/IL8 is essential in human acute myeloid leukemia[J]. Cancer Res, 2017, 77(2): 303-311. DOI:10.1158/0008-5472.CAN-16-1095.
pmid: 27872094
|
[20] |
Jabari M, Allahbakhshian Farsani M, Salari S, et al. Hypoxia-inducible factor1-Α (HIF1α) and vascular endothelial growth factor-A (VEGF-A) expression in De Novo AML patients[J]. Asian Pac J Cancer Prev, 2019, 20(3): 705-710. DOI:10.31557/APJCP.2019.20.3.705.
|
[21] |
Choudhry H, Harris AL. Advances in hypoxia-inducible factor biology[J]. Cell Metab, 2018, 27(2): 281-298. DOI:10.1016/j.cmet.2017.10.005.
pmid: 29129785
|
[22] |
Magliulo D, Bernardi R. HIF-α factors as potential therapeutic targets in leukemia[J]. Expert Opin Ther Targets, 2018, 22(11): 917-928. DOI:10.1080/14728222.2018.1538357.
|
[23] |
Nair R, Salinas-Illarena A, Baldauf HM. New strategies to treat AML: novel insights into AML survival pathways and combination therapies[J]. Leukemia, 2021, 35(2): 299-311. DOI:10.1038/s41375-020-01069-1.
pmid: 33122849
|
[24] |
Du W, Lu C, Zhu X, et al. Prognostic significance of CXCR4 expression in acute myeloid leukemia[J]. Cancer Med, 2019, 8(15): 6595-6603. DOI:10.1002/cam4.2535.
|
[25] |
Ladikou EE, Chevassut T, Pepper CJ, et al. Dissecting the role of the CXCL12/CXCR4 axis in acute myeloid leukaemia[J]. Br J Haematol, 2020, 189(5): 815-825. DOI:10.1111/bjh.16456.
|
[26] |
Vitale C, Griggio V, Riganti C, et al. Targeting HIF-1α regulatory pathways as a strategy to hamper tumor-microenvironment interactions in CLL[J]. Cancers (Basel), 2021, 13(12): 2883. DOI:10.3390/cancers13122883.
|
[27] |
Cheng Y, Ma XL, Wei YQ, et al. Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases[J]. Biochim Biophys Acta Rev Cancer, 2019, 1871(2): 289-312. DOI:10.1016/j.bbcan.2019.01.005.
|
[28] |
Cheng H, Huang C, Xu X, et al. PIM-1 mRNA expression is a potential prognostic biomarker in acute myeloid leukemia[J]. J Transl Med, 2017, 15(1): 179. DOI:10.1186/s12967-017-1287-4.
pmid: 28851457
|
[29] |
Li L, Zhao L, Man J, et al. CXCL2 benefits acute myeloid leukemia cells in hypoxia[J]. Int J Lab Hematol, 2021, 43(5): 1085-1092. DOI:10.1111/ijlh.13512.
pmid: 33793061
|