国际肿瘤学杂志 ›› 2023, Vol. 50 ›› Issue (9): 569-573.doi: 10.3760/cma.j.cn371439-20230410-00109
收稿日期:
2023-04-10
修回日期:
2023-04-22
出版日期:
2023-09-08
发布日期:
2023-10-26
通讯作者:
丁江华
E-mail:doctor0922@126.com
Received:
2023-04-10
Revised:
2023-04-22
Online:
2023-09-08
Published:
2023-10-26
Contact:
Ding Jianghua
E-mail:doctor0922@126.com
摘要:
成纤维细胞生长因子受体(FGFR)2基因融合是胆管癌发生的重要机制。靶向FGFR2的药物成为晚期胆管癌的主要治疗方法。以英菲替尼和培米替尼为代表的三磷酸腺苷竞争性FGFR抑制剂可有效延缓肿瘤进展,延长患者生存期,是FGFR2融合型晚期胆管癌患者的首选药物。然而,几乎所有经英菲替尼治疗的晚期胆管癌患者最终都产生耐药,需要联用其他药物治疗。福巴替尼可作为发生V564F突变的英菲替尼耐药性胆管癌患者的后线药物;对于丝裂原活化蛋白激酶(MAPK)信号通路异常激活所致英菲替尼耐药胆管癌患者,MAPK抑制剂与热休克蛋白90抑制剂可作为新的治疗选择。
黄辉, 丁江华. 靶向FGFR2治疗晚期胆管癌的研究进展[J]. 国际肿瘤学杂志, 2023, 50(9): 569-573.
Huang Hui, Ding Jianghua. Advances in targeting FGFR2 for treatment of advanced cholangiocarcinoma[J]. Journal of International Oncology, 2023, 50(9): 569-573.
[1] |
Banales JM, Marin JJG, Lamarca A, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(9): 557-588. DOI: 10.1038/s41575-020-0310-z.
pmid: 32606456 |
[2] | Vogel A, Segatto O, Stenzinger A, et al. FGFR2 inhibition in cho-langiocarcinoma[J]. Annu Rev Med, 2023, 74: 293-306. DOI: 10.1146/annurev-med-042921-024707. |
[3] |
Pu X, Ye Q, Cai J, et al. Typing FGFR2 translocation determines the response to targeted therapy of intrahepatic cholangiocarcinomas[J]. Cell Death Dis, 2021, 12(3): 256. DOI: 10.1038/s41419-021-03548-4.
pmid: 33692336 |
[4] | Makawita S, K Abou-Alfa G, Roychowdhury S, et al. Infigratinib in patients with advanced cholangiocarcinoma with FGFR2 gene fusions/translocations: the PROOF 301 trial[J]. Future Oncol, 2020, 16(30): 2375-2384. DOI: 10.2217/fon-2020-0299. |
[5] |
Lowery MA, Ptashkin R, Jordan E, et al. Comprehensive molecular profiling of intrahepatic and extrahepatic cholangiocarcinomas: potential targets for intervention[J]. Clin Cancer Res, 2018, 24(17): 4154-4161. DOI: 10.1158/1078-0432.CCR-18-0078.
pmid: 29848569 |
[6] |
Jain A, Javle M. Molecular profiling of biliary tract cancer: a target rich disease[J]. J Gastrointest Oncol, 2016, 7(5): 797-803. DOI: 10.21037/jgo.2016.09.01.
pmid: 27747093 |
[7] | Goyal L, Kongpetch S, Crolley VE, et al. Targeting FGFR inhibition in cholangiocarcinoma[J]. Cancer Treat Rev, 2021, 95: 102170. DOI: 10.1016/j.ctrv.2021.102170. |
[8] |
Chen L, Marsiglia WM, Chen H, et al. Molecular basis for receptor tyrosine kinase A-loop tyrosine transphosphorylation[J]. Nat Chem Biol, 2020, 16(3): 267-277. DOI: 10.1038/s41589-019-0455-7.
pmid: 31959966 |
[9] | Zingg D, Bhin J, Yemelyanenko J, et al. Truncated FGFR2 is a clinically actionable oncogene in multiple cancers[J]. Nature, 2022, 608(7923): 609-617. DOI: 10.1038/s41586-022-05066-5. |
[10] | Hyung S, Han B, Jung J, et al. Incidence of FGFR2 amplification and FGFR2 fusion in patients with metastatic cancer using clinical sequencing[J]. J Oncol, 2022, 2022: 9714570. DOI: 10.1155/2022/9714570. |
[11] | Dong L, Lu D, Chen R, et al. Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma[J]. Cancer Cell, 2022, 40(1): 70-87. e15. DOI: 10.1016/j.ccell.2021.12.006. |
[12] | Smyth EC, Babina IS, Turner NC. Gatekeeper mutations and intratumoral heterogeneity in FGFR2-translocated cholangiocarcinoma[J]. Cancer Discov, 2017, 7(3): 248-249. DOI: 10.1158/2159-8290.CD-17-0057. |
[13] |
Cristinziano G, Porru M, Lamberti D, et al. FGFR2 fusion proteins drive oncogenic transformation of mouse liver organoids towards cholangiocarcinoma[J]. J Hepatol, 2021, 75(2): 351-362. DOI: 10.1016/j.jhep.2021.02.032.
pmid: 33741397 |
[14] | Olivieri C, Li GC, Wang Y, et al. ATP-competitive inhibitors modulate the substrate binding cooperativity of a kinase by altering its conformational entropy[J]. Sci Adv, 2022, 8(30): eabo0696. DOI: 10.1126/sciadv.abo0696. |
[15] | Kommalapati A, Tella SH, Borad M, et al. FGFR inhibitors in oncology: insight on the management of toxicities in clinical practice[J]. Cancers (Basel), 2021, 13(12): 2968. DOI: 10.3390/cancers13122968. |
[16] | Chakrabarti S, Finnes HD, Mahipal A. Fibroblast growth factor receptor (FGFR) inhibitors in cholangiocarcinoma: current status, insight on resistance mechanisms and toxicity management[J]. Expert Opin Drug Metab Toxicol, 2022, 18(1): 85-98. DOI: 10.1080/17425255.2022.2039118. |
[17] | Javle M, Roychowdhury S, Kelley RK, et al. Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2 fusions or rearrangements: mature results from a multicentre, open-label, single-arm, phase 2 study[J]. Lancet Gastroenterol Hepatol, 2021, 6(10): 803-815. DOI: 10.1016/S2468-1253(21)00196-5. |
[18] | Jaidee R, Kukongviriyapan V, Senggunprai L, et al. Inhibition of FGFR2 enhances chemosensitivity to gemcitabine in cholangiocarcinoma through the AKT/mTOR and EMT signaling pathways[J]. Life Sci, 2022, 296: 120427. DOI: 10.1016/j.lfs.2022.120427. |
[19] | Abou-Alfa GK, Sahai V, Hollebecque A, et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study[J]. Lancet Oncol, 2020, 21(5): 671-684. DOI: 10.1016/S1470-2045(20)30109-1. |
[20] | Shi GM, Huang XY, Wen TF, et al. Pemigatinib in previously treated Chinese patients with locally advanced or metastatic cholangiocarcinoma carrying FGFR2 fusions or rearrangements: a phase Ⅱ study[J]. Cancer Med, 2023, 12(4): 4137-4146. DOI: 10.1002/cam4.5273. |
[21] | Braun S, McSheehy P, Litherland K, et al. Derazantinib: an investigational drug for the treatment of cholangiocarcinoma[J]. Expert Opin Investig Drugs, 2021, 30(11): 1071-1080. DOI: 10.1080/13543784.2021.1995355. |
[22] | Ahn DH, Uson Junior PLS, Masci P, et al. A pilot study of Pan-FGFR inhibitor ponatinib in patients with FGFR-altered advanced cholangiocarcinoma[J]. Invest New Drugs, 2022, 40(1): 134-141. DOI: 10.1007/s10637-021-01170-x. |
[23] | Mazzaferro V, El-Rayes BF, Droz Dit Busset M, et al. Derazantinib (ARQ 087) in advanced or inoperable FGFR2 gene fusion-positive intrahepatic cholangiocarcinoma[J]. Br J Cancer, 2019, 120(2): 165-171. DOI: 10.1038/s41416-018-0334-0. |
[24] | Goyal L, Saha SK, Liu LY, et al. Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive cholangiocarcinoma[J]. Cancer Discov, 2017, 7(3): 252-263. DOI: 10.1158/2159-8290.CD-16-1000. |
[25] | Syed YY. Futibatinib: first approval[J]. Drugs, 2022, 82(18): 1737-1743. DOI: 10.1007/s40265-022-01806-z. |
[26] |
Goyal L, Shi L, Liu LY, et al. TAS-120 overcomes resistance to ATP-competitive FGFR inhibitors in patients with FGFR2 fusion-positive intrahepatic cholangiocarcinoma[J]. Cancer Discov, 2019, 9(8): 1064-1079. DOI: 10.1158/2159-8290.CD-19-0182.
pmid: 31109923 |
[27] | Sootome H, Fujita H, Ito K, et al. Futibatinib is a novel irrever-sible FGFR 1-4 inhibitor that shows selective antitumor activity against FGFR-deregulated tumors[J]. Cancer Res, 2020, 80(22): 4986-4997. DOI: 10.1158/0008-5472.CAN-19-2568. |
[28] | Meric-Bernstam F, Bahleda R, Hierro C, et al. Futibatinib, an irreversible FGFR1-4 inhibitor, in patients with advanced solid tumors harboring FGF/FGFR aberrations: a phase Ⅰ dose-expansion study[J]. Cancer Discov, 2022, 12(2): 402-415. DOI: 10.1158/2159-8290.CD-21-0697. |
[29] | Goyal L, Meric-Bernstam F, Hollebecque A, et al. Futibatinib for FGFR2-rearranged intrahepatic cholangiocarcinoma[J]. N Engl J Med, 2023, 388(3): 228-239. DOI: 10.1056/NEJMoa2206834. |
[30] | Szybowska P, Kostas M, Wesche J, et al. Cancer mutations in FGFR2 prevent a negative feedback loop mediated by the ERK1/2 pathway[J]. Cells, 2019, 8(6): 518. DOI: 10.3390/cells8060518. |
[31] | Li XY, Tao H, Jin C, et al. Cordycepin inhibits pancreatic cancer cell growth in vitro and in vivo via targeting FGFR2 and blocking ERK signaling[J]. Chin J Nat Med, 2020, 18(5): 345-355. DOI: 10.1016/S1875-5364(20)30041-8. |
[32] | Saborowski A, Vogel A, Segatto O. Combination therapies for targeting FGFR2 fusions in cholangiocarcinoma[J]. Trends Cancer, 2022, 8(2): 83-86. DOI: 10.1016/j.trecan.2021.11.001. |
[33] | Venkatanarayan A, Liang J, Yen I, et al. CRAF dimerization with ARAF regulates KRAS-driven tumor growth[J]. Cell Rep, 2022, 38(6): 110351. DOI: 10.1016/j.celrep.2022.110351. |
[34] |
Hofmann MH, Gerlach D, Misale S, et al. Expanding the reach of precision oncology by drugging all KRAS mutants[J]. Cancer Discov, 2022, 12(4): 924-937. DOI: 10.1158/2159-8290.CD-21-1331.
pmid: 35046095 |
[35] | Reita D, Pabst L, Pencreach E, et al. Direct targeting KRAS mutation in non-small cell lung cancer: focus on resistance[J]. Cancers (Basel), 2022, 14(5): 1321. DOI: 10.3390/cancers14051321. |
[36] |
Silverman IM, Hollebecque A, Friboulet L, et al. Clinicogenomic analysis of FGFR2-rearranged cholangiocarcinoma identifies correlates of response and mechanisms of resistance to pemigatinib[J]. Cancer Discov, 2021, 11(2): 326-339. DOI: 10.1158/2159-8290.CD-20-0766.
pmid: 33218975 |
[37] |
Zhou Y, Xiang S, Yang F, et al. Targeting gatekeeper mutations for kinase drug discovery[J]. J Med Chem, 2022, 65(23): 15540-15558. DOI: 10.1021/acs.jmedchem.2c01361.
pmid: 36395392 |
[38] |
Du J, Lan T, Liao H, et al. CircNFIB inhibits tumor growth and metastasis through suppressing MEK1/ERK signaling in intrahepatic cholangiocarcinoma[J]. Mol Cancer, 2022, 21(1): 18. DOI: 10.1186/s12943-021-01482-9.
pmid: 35039066 |
[39] | Kendre G, Marhenke S, Lorz G, et al. The Co-mutational spectrum determines the therapeutic response in murine FGFR2 fusion-driven cholangiocarcinoma[J]. Hepatology, 2021, 74(3): 1357-1370. DOI: 10.1002/hep.31799. |
[40] | Kanugovi Vijayavittal A, Amere Subbarao S. The conformation-specific Hsp90 inhibition interferes with the oncogenic RAF kinase adaptation and triggers premature cellular senescence, hence, acts as a tumor suppressor mechanism[J]. Biochim Biophys Acta Mol Cell Res, 2021, 1868(3): 118943. DOI: 10.1016/j.bbamcr.2020.118943. |
[41] | Wang L, Zhang Q, You Q. Targeting the HSP90-CDC37-kinase chaperone cycle: a promising therapeutic strategy for cancer[J]. Med Res Rev, 2022, 42(1): 156-182. DOI: 10.1002/med.21807. |
[42] | Weeraphan C, Phongdara A, Chaiyawat P, et al. Phosphoproteome profiling of isogenic cancer cell-derived exosome reveals HSP90 as a potential marker for human cholangiocarcinoma[J]. Proteomics, 2019, 19(12): e1800159. DOI: 10.1002/pmic.201800159. |
[43] |
Lamberti D, Cristinziano G, Porru M, et al. HSP90 inhibition drives degradation of FGFR2 fusion proteins: implications for treatment of cholangiocarcinoma[J]. Hepatology, 2019, 69(1): 131-142. DOI: 10.1002/hep.30127.
pmid: 30067876 |
[1] | 王盈, 刘楠, 郭兵. 抗体药物偶联物在转移性乳腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 364-369. |
[2] | 王培鑫, 赵军, 徐世红, 姜朝阳, 王小强, 杨红娟. 铁死亡相关机制在骨肉瘤中的应用进展[J]. 国际肿瘤学杂志, 2024, 51(5): 308-311. |
[3] | 杨智, 陆以乔, 顾花艳, 丁佳玲, 郭贵龙. 肿瘤微环境介导乳腺癌靶向治疗耐药的研究进展[J]. 国际肿瘤学杂志, 2024, 51(4): 235-238. |
[4] | 张栋岩, 王品, 魏秋亚, 邓成伍, 魏相相, 高远飞, 王琛. 索凡替尼靶向联合卡培他滨和奥沙利铂治疗肝内胆管癌术后患者1例及文献复习[J]. 国际肿瘤学杂志, 2024, 51(4): 249-253. |
[5] | 马正红, 姜超. 非小细胞肺癌KRASG12C突变的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 95-98. |
[6] | 李开春, 丁昌利, 于文艳. 安罗替尼联合特瑞普利单抗治疗晚期肺肉瘤样癌1例[J]. 国际肿瘤学杂志, 2023, 50(8): 511-512. |
[7] | 陈秋, 王雷, 王明琦, 张梅. 恩沃利单抗联合阿昔替尼治疗肾癌肺转移1例并文献复习[J]. 国际肿瘤学杂志, 2023, 50(7): 445-448. |
[8] | 李青珊, 谢鑫, 张楠, 刘帅. 放疗联合系统治疗在乳腺癌中的应用进展[J]. 国际肿瘤学杂志, 2023, 50(6): 362-367. |
[9] | 刘利, 朱思齐, 孙梦颖, 何敬东. PARP抑制剂在小细胞肺癌靶向治疗中的进展[J]. 国际肿瘤学杂志, 2023, 50(6): 368-372. |
[10] | 刘博翰, 黄俊星. 溶质载体SLC7A5及SLC7A11基因在恶性肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(5): 280-284. |
[11] | 朱军, 黄美金, 李媛, 刘泽刚, 荀欣, 陈宏. HER2低表达乳腺癌的靶向治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(4): 236-240. |
[12] | 邓莉莉, 段星宇, 李保中. HER2靶向药物及其联合治疗方案在胃及食管胃结合部腺癌治疗中的研究进展[J]. 国际肿瘤学杂志, 2023, 50(12): 751-757. |
[13] | 刘绍平, 罗汉传, 林书瀚, 罗家辉. 中晚期肝细胞癌介入及系统治疗的现状与研究进展[J]. 国际肿瘤学杂志, 2023, 50(12): 758-762. |
[14] | 江山, 徐细明. 肝细胞癌的靶向及免疫治疗新进展[J]. 国际肿瘤学杂志, 2023, 50(11): 688-695. |
[15] | 吕璐, 孙鹏飞, 崔腾璐. 子宫内膜癌颈部淋巴结转移综合治疗1例并文献复习[J]. 国际肿瘤学杂志, 2023, 50(11): 701-704. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||