国际肿瘤学杂志 ›› 2022, Vol. 49 ›› Issue (12): 749-753.doi: 10.3760/cma.j.cn371439-20220816-00147
收稿日期:
2022-08-16
修回日期:
2022-09-26
出版日期:
2022-12-08
发布日期:
2023-01-05
通讯作者:
乌新林
E-mail:wuxinlin@126.com
基金资助:
Received:
2022-08-16
Revised:
2022-09-26
Online:
2022-12-08
Published:
2023-01-05
Contact:
Wu Xinlin
E-mail:wuxinlin@126.com
Supported by:
摘要:
结直肠癌是最常见的恶性肿瘤之一,肝转移是影响结直肠癌患者预后的主要因素。外泌体作为广泛存在于多种生物体液中的脂质双分子层微小囊泡,可通过诱导M2型巨噬细胞极化、调节肿瘤相关成纤维细胞活性以及增强肿瘤细胞的耐药性等多种机制促进结直肠癌肝转移的发生发展,在结直肠癌肝转移的诊断治疗与预后评估中具有重要价值。深入探讨外泌体在结直肠癌肝转移中的作用机制及相关治疗进展,以期寻找到新的药物作用靶点从而改善患者预后。
李洪宇, 乌新林. 外泌体与结直肠癌肝转移[J]. 国际肿瘤学杂志, 2022, 49(12): 749-753.
Li Hongyu, Wu Xinlin. Exosomes and liver metastasis of colorectal cancer[J]. Journal of International Oncology, 2022, 49(12): 749-753.
[1] |
Wang Y, Ma LY, Yin XP, et al. Radiomics and radiogenomics in evaluation of colorectal cancer liver metastasis[J]. Front Oncol, 2021, 11: 689509. DOI: 10.3389/fonc.2021.689509.
doi: 10.3389/fonc.2021.689509 |
[2] |
Wang D, Wang X, Si M, et al. Exosome-encapsulated miRNAs contribute to CXCL12/CXCR4-induced liver metastasis of colorectal cancer by enhancing M2 polarization of macrophages[J]. Cancer Lett, 2020, 474: 36-52. DOI: 10.1016/j.canlet.2020.01.005.
doi: S0304-3835(20)30013-6 pmid: 31931030 |
[3] |
McFadden NR, Perry LM, Ghalambor TJ, et al. Locoregional liver-directed therapies to treat unresectable colorectal liver metastases: a review[J]. Oncology (Williston Park), 2022, 36(2): 108-114. DOI: 10.46883/2022.25920945.
doi: 10.46883/2022.25920945 |
[4] |
Nabariya DK, Pallu R, Yenuganti VR. Exosomes: the protagonists in the tale of colorectal cancer?[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874(2): 188426. DOI: 10.1016/j.bbcan.2020.188426.
doi: 10.1016/j.bbcan.2020.188426 |
[5] |
Zhang L, Yu D. Exosomes in cancer development, metastasis, and immunity[J]. Biochim Biophys Acta Rev Cancer, 2019, 1871(2): 455-468. DOI: 10.1016/j.bbcan.2019.04.004.
doi: 10.1016/j.bbcan.2019.04.004 |
[6] |
Zhu L, Sun HT, Wang S, et al. Isolation and characterization of exosomes for cancer research[J]. J Hematol Oncol, 2020, 13(1): 152. DOI: 10.1186/s13045-020-00987-y.
doi: 10.1186/s13045-020-00987-y |
[7] |
Takano Y, Masuda T, Iinuma H, et al. Circulating exosomal microRNA-203 is associated with metastasis possibly via inducing tumor-associated macrophages in colorectal cancer[J]. Oncotarget, 2017, 8(45): 78598-78613. DOI: 10.18632/oncotarget.20009.
doi: 10.18632/oncotarget.20009 pmid: 29108252 |
[8] |
Zhao S, Mi Y, Guan B, et al. Correction to: tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer[J]. J Hematol Oncol, 2021, 14(1): 33. DOI: 10.1186/s13045-021-01042-0.
doi: 10.1186/s13045-021-01042-0 |
[9] |
Zhang C, Wang XY, Zhang P, et al. Cancer-derived exosomal HSPC111 promotes colorectal cancer liver metastasis by reprogram-ming lipid metabolism in cancer-associated fibroblasts[J]. Cell Death Dis, 2022, 13(1): 57. DOI: 10.1038/s41419-022-04506-4.
doi: 10.1038/s41419-022-04506-4 |
[10] |
Zeng Z, Li Y, Pan Y, et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis[J]. Nat Commun, 2018, 9(1): 5395. DOI: 10.1038/s41467-018-07810-w.
doi: 10.1038/s41467-018-07810-w pmid: 30568162 |
[11] |
Shao Y, Chen T, Zheng X, et al. Colorectal cancer-derived small extracellular vesicles establish an inflammatory premetastatic niche in liver metastasis[J]. Carcinogenesis, 2018, 39(11): 1368-1379. DOI: 10.1093/carcin/bgy115.
doi: 10.1093/carcin/bgy115 pmid: 30184100 |
[12] |
Sun H, Meng Q, Shi C, et al. Hypoxia-inducible exosomes facili-tate liver-tropic premetastatic niche in colorectal cancer[J]. Hepatology, 2021, 74(5): 2633-2651. DOI: 10.1002/hep.32009.
doi: 10.1002/hep.32009 |
[13] |
Tian F, Wang P, Lin D, et al. Exosome-delivered miR-221/222 exacerbates tumor liver metastasis by targeting SPINT1 in colo-rectal cancer[J]. Cancer Sci, 2021, 112(9): 3744-3755. DOI: 10.1111/cas.15028.
doi: 10.1111/cas.15028 |
[14] |
Meltzer S, Bjørnetrø T, Lyckander LG, et al. Circulating exosomal miR-141-3p and miR-375 in metastatic progression of rectal cancer[J]. Transl Oncol, 2019, 12(8): 1038-1044. DOI: 10.1016/j.tranon.2019.04.014.
doi: S1936-5233(19)30091-9 pmid: 31146167 |
[15] |
Tsukamoto M, Iinuma H, Yagi T, et al. Circulating exosomal microRNA-21 as a biomarker in each tumor stage of colorectal cancer[J]. Oncology, 2017, 92(6): 360-370. DOI: 10.1159/000463387.
doi: 10.1159/000463387 pmid: 28376502 |
[16] |
Monzo M, Santasusagna S, Moreno I, et al. Exosomal microRNAs isolated from plasma of mesenteric veins linked to liver metastases in resected patients with colon cancer[J]. Oncotarget, 2017, 8(19): 30859-30869. DOI: 10.18632/oncotarget.16103.
doi: 10.18632/oncotarget.16103 pmid: 28415718 |
[17] |
Liu D, Chen C, Cui M, et al. miR-140-3p inhibits colorectal cancer progression and its liver metastasis by targeting BCL9 and BCL2[J]. Cancer Med, 2021, 10(10): 3358-3372. DOI: 10.1002/cam4.3840.
doi: 10.1002/cam4.3840 |
[18] |
Yan S, Jiang Y, Liang C, et al. Exosomal miR-6803-5p as poten-tial diagnostic and prognostic marker in colorectal cancer[J]. J Cell Biochem, 2018, 119(5): 4113-4119. DOI: 10.1002/jcb.26609.
doi: 10.1002/jcb.26609 |
[19] |
Peng ZY, Gu RH, Yan B. Downregulation of exosome-encapsulated miR-548c-5p is associated with poor prognosis in colorectal cancer[J]. J Cell Biochem, 2018, 120(2): 1457-1463. DOI: 10.1002/jcb.27291.
doi: 10.1002/jcb.27291 |
[20] |
Yan S, Han B, Gao S, et al. Exosome-encapsulated microRNAs as circulating biomarkers for colorectal cancer[J]. Oncotarget, 2017, 8(36): 60149-60158. DOI: 10.18632/oncotarget.18557.
doi: 10.18632/oncotarget.18557 pmid: 28947960 |
[21] |
Sun L, Liu X, Pan B, et al. Serum exosomal miR-122 as a potential diagnostic and prognostic biomarker of colorectal cancer with liver metastasis[J]. J Cancer, 2020, 11(3): 630-637. DOI: 10.7150/jca.33022.
doi: 10.7150/jca.33022 pmid: 31942186 |
[22] |
Teng Y, Ren Y, Hu X, et al. MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression[J]. Nat Commun, 2017, 8: 14448. DOI: 10.1038/ncomms14448.
doi: 10.1038/ncomms14448 pmid: 28211508 |
[23] |
Jiang K, Chen H, Fang Y, et al. Exosomal ANGPTL1 attenuates colorectal cancer liver metastasis by regulating Kupffer cell secretion pattern and impeding MMP9 induced vascular leakiness[J]. J Exp Clin Cancer Res, 2021, 40(1): 21. DOI: 10.1186/s13046-020-01816-3.
doi: 10.1186/s13046-020-01816-3 |
[24] |
Xu J, Xiao Y, Liu B, et al. Exosomal MALAT1 sponges miR-26a/26b to promote the invasion and metastasis of colorectal cancer via FUT4 enhanced fucosylation and PI3K/Akt pathway[J]. J Exp Clin Cancer Res, 2020, 39(1): 54. DOI: 10.1186/s13046-020-01562-6.
doi: 10.1186/s13046-020-01562-6 |
[25] |
Wang X, Ding X, Nan L, et al. Investigation of the roles of exo-somes in colorectal cancer liver metastasis[J]. Oncol Rep, 2015, 33(5): 2445-2453. DOI: 10.3892/or.2015.3843.
doi: 10.3892/or.2015.3843 pmid: 25760247 |
[26] |
Ma J, Liang W, Qiang Y, et al. Interleukin-1 receptor antagonist inhibits matastatic potential by down-regulating CXCL12/CXCR4 signaling axis in colorectal cancer[J]. Cell Commun Signal, 2021, 19(1): 122. DOI: 10.1186/s12964-021-00804-0.
doi: 10.1186/s12964-021-00804-0 pmid: 34930323 |
[27] |
Guo S, Chen J, Chen F, et al. Exosomes derived from Fusobacterium nucleatum-infected colorectal cancer cells facilitate tumour metastasis by selectively carrying miR-1246/92b-3p/27a-3p and CXCL16[J]. Gut, 2020, 70: 1507-1519. DOI: 10.1136/gutjnl-2020-321187.
doi: 10.1136/gutjnl-2020-321187 |
[28] |
Sun J, Lu Z, Fu W, et al. Exosome-derived ADAM17 promotes liver metastasis in colorectal cancer[J]. Front Pharmacol, 2021, 12: 734351. DOI: 10.3389/fphar.2021.734351.
doi: 10.3389/fphar.2021.734351 |
[29] |
Zhang X, Bai J, Yin H, et al. Exosomal miR-1255b-5p targets human telomerase reverse transcriptase in colorectal cancer cells to suppress epithelial-to-mesenchymal transition[J]. Mol Oncol, 2020, 14(10): 2589-2608. DOI: 10.1002/1878-0261.12765.
doi: 10.1002/1878-0261.12765 |
[30] |
You YN, Hardiman KM, Bafford A, et al. The American Society of colon and rectal surgeons clinical practice guidelines for the management of rectal cancer[J]. Dis Colon Rectum, 2020, 63(9): 1191-1222. DOI: 10.1097/DCR.0000000000001762.
doi: 10.1097/DCR.0000000000001762 pmid: 33216491 |
[31] |
Hashiguchi Y, Muro K, Saito Y, et al. Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2019 for the treatment of colorectal cancer[J]. Int J Clin Oncol, 2020, 25(1): 1-42. DOI: 10.1007/s10147-019-01485-z.
doi: 10.1007/s10147-019-01485-z pmid: 31203527 |
[32] |
Hu JL, Wang W, Lan XL, et al. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer[J]. Mol Cancer, 2019, 18(1): 91. DOI: 10.1186/s12943-019-1019-x.
doi: 10.1186/s12943-019-1019-x pmid: 31064356 |
[33] |
Zhao K, Cheng X, Ye Z, et al. Exosome-mediated transfer of circ_0000338 enhances 5-fluorouracil resistance in colorectal cancer through regulating microRNA 217 (miR-217) and miR-485-3p[J]. Mol Cell Biol, 2021, 41(5): e00517-e00520. DOI: 10.1128/MCB.00517-20.
doi: 10.1128/MCB.00517-20 |
[34] |
Ning T, Li J, He Y, et al. Exosomal miR-208b related with oxaliplatin resistance promotes Treg expansion in colorectal cancer[J]. Mol Ther, 2021, 29(9): 2723-2736. DOI: 10.1016/j.ymthe.2021.04.028.
doi: 10.1016/j.ymthe.2021.04.028 pmid: 33905821 |
[35] |
Li F, Zhan L, Dong Q, et al. Tumor-derived exosome-educated hepatic stellate cells regulate lactate metabolism of hypoxic colorectal tumor cells via the IL-6/STAT3 pathway to confer drug resistance[J]. Onco Targets Ther, 2020, 13: 7851-7864. DOI: 10.2147/OTT.S253485.
doi: 10.2147/OTT.S253485 |
[36] |
Chibani H, El Bairi K, Al Jarroudi O, et al. Bevacizumab in meta-static colorectal cancer in a real-life setting-toxicity profile, survival outcomes, and impact of tumor sidedness[J]. Contemp Oncol (Pozn), 2022, 26(1): 32-39. DOI: 10.5114/wo.2022.114678.
doi: 10.5114/wo.2022.114678 |
[37] |
Tang W, Ren L, Liu T, et al. Bevacizumab plus mFOLFOX6 versus mFOLFOX6 alone as first-line treatment for RAS mutant unresectable colorectal liver-limited metastases: the BECOME randomized controlled trial[J]. J Clin Oncol, 2020, 38(27): 3175-3184. DOI: 10.1200/JCO.20.00174.
doi: 10.1200/JCO.20.00174 |
[38] |
Huang W, Zhang H, Tian Y, et al. LncRNA SNHG11 enhances bevacizumab resistance in colorectal cancer by mediating miR-1207-5p/ABCC1 axis[J]. Anticancer Drugs, 2022, 33(6): 575-586. DOI: 10.1097/CAD.0000000000001289.
doi: 10.1097/CAD.0000000000001289 pmid: 35324517 |
[39] |
Hu H, Wang K, Huang M, et al. Modified FOLFOXIRI with or without cetuximab as conversion therapy in patients with RAS/BRAF wild-type unresectable liver metastases colorectal cancer: the FOCULM multicenter phase Ⅱ trial[J]. Oncologist, 2021, 26(1): e90-e98. DOI: 10.1634/theoncologist.2020-0563.
doi: 10.1634/theoncologist.2020-0563 |
[40] |
Sobrero A, Lenz HJ, Eng C, et al. Extended RAS analysis of the phase Ⅲ EPIC trial: irinotecan + cetuximab versus irinotecan as second-line treatment for patients with metastatic colorectal cancer[J]. Oncologist, 2021, 26(2): e261-e269. DOI: 10.1002/onco.13591.
doi: 10.1002/onco.13591 |
[41] |
Zhang S, Zhang Y, Qu J, et al. Exosomes promote cetuximab resistance via the PTEN/Akt pathway in colon cancer cells[J]. Braz J Med Biol Res, 2017, 51(1): e6472. DOI: 10.1590/1414-431X20176472.
doi: 10.1590/1414-431X20176472 |
[1] | 张蕊, 褚衍六. 基于FIT与肠道菌群的结直肠癌风险评估模型的研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 370-375. |
[2] | 高凡, 王萍, 杜超, 褚衍六. 肠道菌群与结直肠癌非手术治疗的相关研究进展[J]. 国际肿瘤学杂志, 2024, 51(6): 376-381. |
[3] | 王俊毅, 洪楷彬, 纪荣佳, 陈大朝. 癌结节对结直肠癌根治性切除术后肝转移的影响[J]. 国际肿瘤学杂志, 2024, 51(5): 280-285. |
[4] | 刘博翰, 黄俊星. 液体活检技术在食管鳞状细胞癌中的研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 105-108. |
[5] | 孙国宝, 杨倩, 庄庆春, 高斌斌, 孙晓刚, 宋伟, 沙丹. 结直肠癌肝转移组织病理学生长方式研究进展[J]. 国际肿瘤学杂志, 2024, 51(2): 114-118. |
[6] | 刘德宝, 孙子雯, 鲁守堂, 徐海东. ASB6在结直肠癌组织中的表达及临床意义[J]. 国际肿瘤学杂志, 2023, 50(8): 470-474. |
[7] | 张渊, 白芷玉, 李琪, 冯勤梅. 外泌体在恶性肿瘤中的研究现状[J]. 国际肿瘤学杂志, 2023, 50(8): 484-488. |
[8] | 陈卓, 陶俊, 陈琳, 柯晶. 外周血miR-194联合粪便miR-143检测对结直肠癌临床筛查的价值[J]. 国际肿瘤学杂志, 2023, 50(5): 268-273. |
[9] | 黄镇, 张蔡羽天, 柯少波, 石薇, 赵文思, 陈永顺. 结直肠癌患者术后预后模型的构建[J]. 国际肿瘤学杂志, 2023, 50(3): 157-163. |
[10] | 徐良富, 李袁飞. MSS型结直肠癌肿瘤微环境及免疫联合治疗研究进展[J]. 国际肿瘤学杂志, 2023, 50(3): 186-190. |
[11] | 刘玉杰, 赵志强, 王子琤. 早期结直肠癌患者外周血单个核细胞中TOP2A、ERBB2的水平及其诊断价值[J]. 国际肿瘤学杂志, 2023, 50(12): 717-722. |
[12] | 陈群响, 张晓钰, 张妍, 张凯翔, 李捷, 陈曦. 伊尼妥单抗联合长春瑞滨治疗HER2阳性转移性乳腺癌1例[J]. 国际肿瘤学杂志, 2023, 50(12): 763-765. |
[13] | 陶红, 殷红, 罗宏, 陶佳瑜. 靶向肿瘤相关巨噬细胞增强结直肠癌免疫检查点抑制剂疗效的潜在策略[J]. 国际肿瘤学杂志, 2023, 50(11): 683-687. |
[14] | 王熙, 吴川清. 结直肠癌多药耐药逆转的研究进展[J]. 国际肿瘤学杂志, 2023, 50(1): 42-46. |
[15] | 高一钊, 刘洋, 刘秋龙, 邢金良. 循环游离核酸在结直肠癌临床诊疗中的应用[J]. 国际肿瘤学杂志, 2022, 49(9): 555-559. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||