[1] |
Li H, Ding C, Zeng H, et al. Improved esophageal squamous cell carcinoma screening effectiveness by risk-stratified endoscopic screening: evidence from high-risk areas in China[J]. Cancer Commun (Lond), 2021, 41(8): 715-725. DOI: 10.1002/cac2.12186.
doi: 10.1002/cac2.12186
|
[2] |
He H, Chen N, Hou Y, et al. Trends in the incidence and survival of patients with esophageal cancer: a SEER database analysis[J]. Thorac Cancer, 2020, 11(5): 1121-1128. DOI: 10.1111/1759-7714.13311.
doi: 10.1111/1759-7714.13311
pmid: 32154652
|
[3] |
Xu J, Liao K, Yang X, et al. Correction to: using single-cell seque-ncing technology to detect circulating tumor cells in solid tumors[J]. Mol Cancer, 2022, 21(1): 100. DOI: 10.1186/s12943-022-01564-2.
doi: 10.1186/s12943-022-01564-2
|
[4] |
Krämer M, Plum PS, Velazquez Camacho O, et al. Cell type-specific transcriptomics of esophageal adenocarcinoma as a scalable alternative for single cell transcriptomics[J]. Mol Oncol, 2020, 14(6): 1170-1184. DOI: 10.1002/1878-0261.12680.
doi: 10.1002/1878-0261.12680
pmid: 32255255
|
[5] |
Wu H, Yu J, Li Y, et al. Single-cell RNA sequencing reveals diverse intratumoral heterogeneities and gene signatures of two types of esophageal cancers[J]. Cancer Lett, 2018, 438: 133-143. DOI: 10.1016/j.canlet.2018.09.017.
doi: S0304-3835(18)30572-X
pmid: 30223068
|
[6] |
Feng Z, Qu J, Liu X, et al. Integrated bioinformatics analysis of differentially expressed genes and immune cell infiltration charac-teristics in esophageal squamous cell carcinoma[J]. Sci Rep, 2021, 11(1): 16696. DOI: 10.1038/s41598-021-96274-y.
doi: 10.1038/s41598-021-96274-y
|
[7] |
Zheng L, Li L, Xie J, et al. Six novel biomarkers for diagnosis and prognosis of esophageal squamous cell carcinoma: validated by scRNA-seq and qPCR[J]. J Cancer, 2021, 12(3): 899-911. DOI: 10.7150/jca.50443.
doi: 10.7150/jca.50443
pmid: 33403046
|
[8] |
中国医师协会放射肿瘤治疗医师分会; 中华医学会放射肿瘤治疗学分会; 中国抗癌协会肿瘤放射治疗专业委员会. 中国食管癌放射治疗指南(2021年版)[J]. 国际肿瘤学杂志, 2022, 49(1): 12-25. DOI: 10.3760/cma.j.cn371439-20211021-00002.
doi: 10.3760/cma.j.cn371439-20211021-00002
|
[9] |
Zhou H, Wang G, Xiao Z, et al. NRAGE confers radiation resistance in 2D and 3D cell culture and poor outcome in patients with esophageal squamous cell carcinoma[J]. Front Oncol, 2022, 12: 831506. DOI: 10.3389/fonc.2022.831506.
doi: 10.3389/fonc.2022.831506
|
[10] |
Yang L, Zhang X, MacKay M, et al. Identification of radiorespon-sive genes in esophageal cancer from longitudinal and single cell exome sequencing[J]. Int J Radiat Oncol Biol Phys, 2020, 108(4): 1103-1114. DOI: 10.1016/j.ijrobp.2020.06.015.
doi: 10.1016/j.ijrobp.2020.06.015
|
[11] |
Yang L, Zhang X, Hou Q, et al. Single-cell RNA-seq of esophageal squamous cell carcinoma cell line with fractionated irradiation reveals radioresistant gene expression patterns[J]. BMC Genomics, 2019, 20(1): 611. DOI: 10.1186/s12864-019-5970-0.
doi: 10.1186/s12864-019-5970-0
pmid: 31345182
|
[12] |
Wu H, Yu J, Kong D, et al. Population and single-cell transcrip-tome analyses reveal diverse transcriptional changes associated with radioresistance in esophageal squamous cell carcinoma[J]. Int J Oncol, 2019, 55(6): 1237-1248. DOI: 10.3892/ijo.2019.4897.
doi: 10.3892/ijo.2019.4897
|
[13] |
Hou Q, Jiang Z, Li Z, et al. Identification and functional validation of radioresistance-related genes AHNAK2 and EVPL in esophageal squamous cell carcinoma by exome and transcriptome sequencing analyses[J]. Onco Targets Ther, 2021, 14: 1131-1145. DOI: 10.2147/OTT.S291007.
doi: 10.2147/OTT.S291007
|
[14] |
Chen Z, Huang Y, Hu Z, et al. Dissecting the single-cell tran-scriptome network in patients with esophageal squamous cell carcinoma receiving operative paclitaxel plus platinum chemothe-rapy[J]. Oncogenesis, 2021, 10(10): 71. DOI: 10.1038/s41389-021-00359-2.
doi: 10.1038/s41389-021-00359-2
|
[15] |
Wu H, Chen S, Yu J, et al. Single-cell transcriptome analyses reveal molecular signals to intrinsic and acquired paclitaxel resistance in esophageal squamous cancer cells[J]. Cancer Lett, 2018, 420: 156-167. DOI: 10.1016/j.canlet.2018.01.059.
doi: S0304-3835(18)30092-2
pmid: 29410067
|
[16] |
Kumari N, Choi SH. Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies[J]. J Exp Clin Cancer Res, 2022, 41(1): 68. DOI: 10.1186/s13046-022-02272-x.
doi: 10.1186/s13046-022-02272-x
|
[17] |
Zheng Y, Chen Z, Han Y, et al. Immune suppressive landscape in the human esophageal squamous cell carcinoma microenvironment[J]. Nat Commun, 2020, 11(1): 6268. DOI: 10.1038/s41467-020-20019-0.
doi: 10.1038/s41467-020-20019-0
pmid: 33293583
|
[18] |
Zhang X, Peng L, Luo Y, et al. Dissecting esophageal squamous-cell carcinoma ecosystem by single-cell transcriptomic analysis[J]. Nat Commun, 2021, 12(1): 5291. DOI: 10.1038/s41467-021-25539-x.
doi: 10.1038/s41467-021-25539-x
pmid: 34489433
|
[19] |
秦斌. 基于单细胞转录组分析揭示食管鳞状细胞癌发展中的细胞状态[D]. 郑州大学, 2021. DOI: 10.27466/d.cnki.gzzdu.2021.003004.
doi: 10.27466/d.cnki.gzzdu.2021.003004
|
[20] |
Chen Z, Zhao M, Liang J, et al. Dissecting the single-cell tran-scriptome network underlying esophagus non-malignant tissues and esophageal squamous cell carcinoma[J]. EBioMedicine, 2021, 69: 103459. DOI: 10.1016/j.ebiom.2021.103459.
doi: 10.1016/j.ebiom.2021.103459
|
[21] |
Han L, Chen S, Chen Z, et al. Interleukin 32 promotes Foxp3+ Treg cell development and CD8+ T cell function in human esophageal squamous cell carcinoma microenvironment[J]. Front Cell Dev Biol, 2021, 9: 704853. DOI: 10.3389/fcell.2021.704853.
doi: 10.3389/fcell.2021.704853
|
[22] |
Dinh HQ, Pan F, Wang G, et al. Integrated single-cell transcrip-tome analysis reveals heterogeneity of esophageal squamous cell carcinoma microenvironment[J]. Nat Commun, 2021, 12(1): 7335. DOI: 10.1038/s41467-021-27599-5.
doi: 10.1038/s41467-021-27599-5
pmid: 34921160
|
[23] |
Yao J, Duan L, Huang X, et al. Development and validation of a prognostic gene signature correlated with M2 macrophage infiltration in esophageal squamous cell carcinoma[J]. Front Oncol, 2021, 11: 769727. DOI: 10.3389/fonc.2021.769727.
doi: 10.3389/fonc.2021.769727
|
[24] |
Larsson AJM, Johnsson P, Hagemann-Jensen M, et al. Genomic encoding of transcriptional burst kinetics[J]. Nature, 2019, 565(7738): 251-254. DOI: 10.1038/s41586-018-0836-1.
doi: 10.1038/s41586-018-0836-1
|
[25] |
Su Z, Wang Z, Ni X, et al. Inferring the evolution and progression of small-cell lung cancer by single-cell sequencing of circulating tumor cells[J]. Clin Cancer Res, 2019, 25(16): 5049-5060. DOI: 10.1158/1078-0432.CCR-18-3571.
doi: 10.1158/1078-0432.CCR-18-3571
pmid: 31113842
|
[26] |
Massoni-Badosa R, Iacono G, Moutinho C, et al. Sampling time-dependent artifacts in single-cell genomics studies[J]. Genome Biol, 2020, 21(1): 112. DOI: 10.1186/s13059-020-02032-0.
doi: 10.1186/s13059-020-02032-0
pmid: 32393363
|