Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (5): 263-269.doi: 10.3760/cma.j.cn371439-20220214-00049
• Original Articles • Previous Articles Next Articles
Xiong Chan1, Yan Ying2, Xie Xiaodong3, Meng Fanjie1, Yu Huiying1()
Received:
2022-02-14
Revised:
2022-04-18
Online:
2022-05-08
Published:
2022-05-31
Contact:
Yu Huiying
E-mail:hyingy@sina.com
Supported by:
Xiong Chan, Yan Ying, Xie Xiaodong, Meng Fanjie, Yu Huiying. Study on the biological characteristics of polyploid cervical cancer HeLa cells induced by radiation[J]. Journal of International Oncology, 2022, 49(5): 263-269.
"
组别 | STAT3 | P-STAT3(Tyr 705) | P-STAT3(Tyr 705)/STAT3 | P-STAT3(Ser 727) | P-STAT3(Ser 727)/STAT3 |
---|---|---|---|---|---|
对照组 | 1.15±0.36 | 0.25±0.03 | 0.22±0.08 | 0.24±0.04 | 0.16±0.01 |
7 Gy组 | 1.06±0.24 | 0.47±0.01a | 0.44±0.04a | 0.21±0.02 | 0.21±0.05 |
14 Gy组 | 1.15±0.27 | 0.60±0.02ab | 0.52±0.07a | 0.25±0.02 | 0.23±0.06 |
F值 | 0.10 | 208.82 | 13.44 | 1.64 | 1.69 |
P值 | 0.905 | <0.001 | 0.006 | 0.271 | 0.262 |
[1] |
Zhang D, Yang X, Yang Z, et al. Daughter cells and erythroid cells budding from PGCCs and their clinicopathological significances in colorectal cancer[J]. J Cancer, 2017, 8(3): 469-478. DOI: 10.7150/jca.17012.
doi: 10.7150/jca.17012 pmid: 28261349 |
[2] |
Fei F, Zhang D, Yang Z, et al. The number of polyploid giant cancer cells and epithelial-mesenchymal transition-related proteins are associated with invasion and metastasis in human breast cancer[J]. J Exp Clin Cancer Res, 2015, 34: 158. DOI: 10.1186/s13046-015-0277-8.
doi: 10.1186/s13046-015-0277-8 |
[3] |
Qu Y, Zhang L, Rong Z, et al. Number of glioma polyploid giant cancer cells (PGCCs) associated with vasculogenic mimicry formation and tumor grade in human glioma[J]. J Exp Clin Cancer Res, 2013, 32(1): 75. DOI: 10.1186/1756-9966-32-75.
doi: 10.1186/1756-9966-32-75 |
[4] |
Zhang S, Mercado-Uribe I, Hanash S, et al. iTRAQ-based proteomic analysis of polyploid giant cancer cells and budding progeny cells reveals several distinct pathways for ovarian cancer development[J]. PLoS One, 2013, 8(11): e80120. DOI: 10.1371/journal.pone.0080120.
doi: 10.1371/journal.pone.0080120 |
[5] |
Richards JS, Candelaria NR, Lanz RB. Polyploid giant cancer cells and ovarian cancer: new insights into mitotic regulators and polyploidy[J]. Biol Reprod, 2021, 105(2): 305-316. DOI: 10.1093/biolre/ioab102.
doi: 10.1093/biolre/ioab102 |
[6] |
Nehme Z, Pasquereau S, Haidar Ahmad S, et al. Polyploid giant cancer cells, stemness and epithelial-mesenchymal plasticity elicited by human cytomegalovirus[J]. Oncogene, 2021, 40(17): 3030-3046. DOI: 10.1038/s41388-021-01715-7.
doi: 10.1038/s41388-021-01715-7 |
[7] |
Herbein G, Nehme Z. Polyploid giant cancer cells, a hallmark of oncoviruses and a new therapeutic challenge[J]. Front Oncol, 2020, 10: 567116. DOI: 10.3389/fonc.2020.567116.
doi: 10.3389/fonc.2020.567116 |
[8] |
Kudo-Saito C, Miyamoto T, Imazeki H, et al. IL33 is a key driver of treatment resistance of cancer[J]. Cancer Res, 2020, 80(10): 1981-1990. DOI: 10.1158/0008-5472.CAN-19-2235.
doi: 10.1158/0008-5472.CAN-19-2235 pmid: 32156776 |
[9] |
Liu K, Lu R, Zhao Q, et al. Association and clinicopathologic significance of p38MAPK-ERK-JNK-CDC25C with polyploid giant cancer cell formation[J]. Med Oncol, 2019, 37(1): 6. DOI: 10.1007/s12032-019-1330-9.
doi: 10.1007/s12032-019-1330-9 |
[10] |
Fei F, Zhang M, Li B, et al. Formation of polyploid giant cancer cells involves in the prognostic value of neoadjuvant chemoradiation in locally advanced rectal cancer[J]. J Oncol, 2019, 2019: 2316436. DOI: 10.1155/2019/2316436.
doi: 10.1155/2019/2316436 |
[11] |
White-Gilbertson S, Lu P, Norris JS, et al. Genetic and pharmacological inhibition of acid ceramidase prevents asymmetric cell division by neosis[J]. J Lipid Res, 2019, 60(7): 1225-1235. DOI: 10.1194/jlr.M092247.
doi: 10.1194/jlr.M092247 pmid: 30988134 |
[12] |
White-Gilbertson S, Lu P, Jones CM, et al. Tamoxifen is a candidate first-in-class inhibitor of acid ceramidase that reduces amitotic division in polyploid giant cancer cells-Unrecognized players in tumorigenesis[J]. Cancer Med, 2020, 9(9): 3142-3152. DOI: 10.1002/cam4.2960.
doi: 10.1002/cam4.2960 |
[13] |
Zhang Z, Feng X, Deng Z, et al. Irradiation-induced polyploid giant cancer cells are involved in tumor cell repopulation via neosis[J]. Mol Oncol, 2021, 15(8): 2219-2234. DOI: 10.1002/1878-0261.12913.
doi: 10.1002/1878-0261.12913 |
[14] |
Salmina K, Huna A, Kalejs M, et al. The cancer aneuploidy paradox: in the light of evolution[J]. Genes (Basel), 2019, 10(2): 83. DOI: 10.3390/genes10020083.
doi: 10.3390/genes10020083 |
[15] |
Mirzayans R, Andrais B, Murray D. Roles of polyploid/multinu-cleated giant cancer cells in metastasis and disease relapse following anticancer treatment[J]. Cancers (Basel), 2018, 10(4): 118. DOI: 10.3390/cancers10040118.
doi: 10.3390/cancers10040118 |
[16] |
Mirzayans R, Andrais B, Scott A, et al. Multinucleated giant cancer cells produced in response to ionizing radiation retain viability and replicate their genome[J]. Int J Mol Sci, 2017, 18(2): 360. DOI: 10.3390/ijms18020360.
doi: 10.3390/ijms18020360 |
[17] |
Zhang S, Mercado-Uribe I, Liu J. Tumor stroma and differentiated cancer cells can be originated directly from polyploid giant cancer cells induced by paclitaxel[J]. Int J Cancer, 2014, 134(3): 508-518. DOI: 10.1002/ijc.28319.
doi: 10.1002/ijc.28319 |
[18] |
Chen J, Niu N, Zhang J, et al. Polyploid giant cancer cells (PGCCs): the evil roots of cancer[J]. Curr Cancer Drug Targets, 2019, 19(5): 360-367. DOI: 10.2174/1568009618666180703154233.
doi: 10.2174/1568009618666180703154233 |
[19] |
Saleh T, Carpenter VJ, Bloukh S, et al. Targeting tumor cell senescence and polyploidy as potential therapeutic strategies[J]. Semin Cancer Biol, 2022, 81: 37-47. DOI: 10.1016/j.semcancer.2020.12.010.
doi: 10.1016/j.semcancer.2020.12.010 |
[20] |
王丽丽, 赵松, 欧阳明玥, 等. 多西他赛诱导的多倍体肿瘤细胞在肿瘤复发中的作用[J]. 国际肿瘤学杂志, 2020, 47(6): 340-345. DOI: 10.3760/cma.j.cn371439-20200103-00032.
doi: 10.3760/cma.j.cn371439-20200103-00032 |
[21] |
王丽丽, 欧阳明玥, 赵松, 等. 多西紫杉醇诱导的多倍体非小细胞肺癌A549细胞增殖及凋亡特性研究[J]. 肿瘤研究与临床, 2020, 32(9): 606-612. DOI: 10.3760/cma.j.cn115355-20191209-00565.
doi: 10.3760/cma.j.cn115355-20191209-00565 |
[22] |
Niu N, Zhang J, Zhang N, et al. Linking genomic reorganization to tumor initiation via the giant cell cycle[J]. Oncogenesis, 2016, 5(12): e281. DOI: 10.1038/oncsis.2016.75.
doi: 10.1038/oncsis.2016.75 |
[23] |
Park SY, Lee CJ, Choi JH, et al. The JAK2/STAT3/CCND2 axis promotes colorectal cancer stem cell persistence and radioresistance[J]. J Exp Clin Cancer Res, 2019, 38(1): 399. DOI: 10.1186/s13046-019-1405-7.
doi: 10.1186/s13046-019-1405-7 |
[1] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[2] | Zhang Lu, Jiang Hua, Lin Zhou, Ma Chenying, Xu Xiaoting, Wang Lili, Zhou Juying. Analysis of curative effect and prognosis of immune checkpoint inhibitor in the treatment of recurrent and metastatic cervical cancer [J]. Journal of International Oncology, 2023, 50(8): 475-483. |
[3] | Lyu Lu, Sun Pengfei. Gut flora and cervical cancer [J]. Journal of International Oncology, 2023, 50(6): 373-376. |
[4] | Cao Xiaohui, Yu Hong, Li Wanhu. Application of CT-based radiomics analysis in predicting and identifying of treatment-associated pneumonitis [J]. Journal of International Oncology, 2023, 50(2): 107-111. |
[5] | Chen Zhiming, Chen Junjie, Li Li, Ding Qian, Han Yunan, Zhao Hongyu. Identification of critical radioresistance genes in esophageal squamous cell carcinoma by whole exome sequencing [J]. Journal of International Oncology, 2023, 50(10): 592-599. |
[6] | Che Yanmin, Zhang Wanhong, Lyu Gaofeng. Clinical prognosis and influencing factors of patients with hypopharyngeal squamous cell carcinoma treated by salvage surgery [J]. Journal of International Oncology, 2023, 50(1): 12-16. |
[7] | Ma Chenying, Zhao Jing, Xu Xiaoting, Qin Songbing, Zhou Juying. Advances in clinical diagnosis and treatment of radiation enteritis [J]. Journal of International Oncology, 2023, 50(1): 28-32. |
[8] | Ma Xueyan, Lu Lili, Sun Pengfei. Advances in the immune microenvironment in cervical cancer [J]. Journal of International Oncology, 2023, 50(1): 47-50. |
[9] | Zhang Lu, Zhou Juying, Ma Chenying, Lin Zhou. Advances in immunotherapy for recurrent and metastatic cervical cancer [J]. Journal of International Oncology, 2022, 49(9): 517-520. |
[10] | Shi Yingxia, Hu Lijun, Yu Jingping. Application of immune checkpoint inhibitors in the treatment of recurrent or metastatic cervical cancer [J]. Journal of International Oncology, 2022, 49(9): 568-571. |
[11] | Peng Chen, Xie Yintong, Zhang Xin, Xie Peng. Research progress of maintenance therapy for cervical cancer [J]. Journal of International Oncology, 2022, 49(7): 430-435. |
[12] | Xiao Nan, Sun Pengfei. Research progress of oxidative stress in the sensitivity of chemoradiotherapy for gliomas [J]. Journal of International Oncology, 2022, 49(6): 357-361. |
[13] | Yuan Chenyang, Zhou Juying. Research progress on prognostic factors of cervical cancer [J]. Journal of International Oncology, 2022, 49(5): 307-313. |
[14] | Yuan Chenyang, Zhou Juying, Du Xiao, Ji Huan, Zhao Tianyi. Comparison of 2018 and 2009 FIGO staging system of cervical cancer and analysis of prognostic factors [J]. Journal of International Oncology, 2022, 49(3): 151-163. |
[15] | Li Ping, Sun Xiaonan. Application of the combination of stereotactic body radiation therapy and immune checkpoint inhibitors in non-small cell lung cancer [J]. Journal of International Oncology, 2022, 49(2): 116-120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||