Journal of International Oncology ›› 2023, Vol. 50 ›› Issue (1): 28-32.doi: 10.3760/cma.j.cn371439-20220930-00005
• Reviews • Previous Articles Next Articles
Ma Chenying1, Zhao Jing1, Xu Xiaoting1, Qin Songbing1, Zhou Juying1,2()
Received:
2022-09-30
Revised:
2022-12-02
Online:
2023-01-08
Published:
2023-03-16
Contact:
Zhou Juying
E-mail:zhoujuyingsy@163.com
Supported by:
Ma Chenying, Zhao Jing, Xu Xiaoting, Qin Songbing, Zhou Juying. Advances in clinical diagnosis and treatment of radiation enteritis[J]. Journal of International Oncology, 2023, 50(1): 28-32.
[1] |
Andreyev HJ, Wotherspoon A, Denham JW, et al. "Pelvic radiation disease": new understanding and new solutions for a new disease in the era of cancer survivorship[J]. Scand J Gastroenterol, 2011, 46(4): 389-397. DOI: 10.3109/00365521.2010.545832.
doi: 10.3109/00365521.2010.545832 |
[2] |
Shadad AK, Sullivan FJ, Martin JD, et al. Gastrointestinal radiation injury: symptoms, risk factors and mechanisms[J]. World J Gastroenterol, 2013, 19(2): 185-198. DOI: 10.3748/wjg.v19.i2.185.
doi: 10.3748/wjg.v19.i2.185 |
[3] |
中国医师协会外科医师分会, 中华医学会外科学分会结直肠外科学组. 中国放射性直肠炎诊治专家共识(2018版)[J]. 中华炎性肠病杂志, 2019, 3(1): 5-20. DOI: 10.3760/cma.j.issn.2096-367X.2019.01.003.
doi: 10.3760/cma.j.issn.2096-367X.2019.01.003 |
[4] |
Gandle C, Dhingra S, Agarwal S. Radiation-induced enteritis[J]. Clin Gastroenterol Hepatol, 2018, 18(3): A39-A40. DOI: 10.1016/j.cgh.2018.11.060.
doi: 10.1016/j.cgh.2018.11.060 |
[5] |
Son JH, Kim SH, Cho EY, et al. Comparison of diagnostic performance between 1 millisievert CT enterography and half-standard dose CT enterography for evaluating active inflammation in patients with Crohn's disease[J]. Abdom Radiol (NY), 2018, 43(7): 1558-1566. DOI: 10.1007/s00261-017-1359-1.
doi: 10.1007/s00261-017-1359-1 pmid: 29038856 |
[6] |
Loge L, Florescu C, Alves A, et al. Radiation enteritis: diagnostic and therapeutic issues[J]. J Visc Surg, 2020, 157(6): 475-485. DOI: 10.1016/j.jviscsurg.2020.08.012.
doi: 10.1016/j.jviscsurg.2020.08.012 pmid: 32883650 |
[7] |
Gatti M, Allois L, Carisio A, et al. Magnetic resonance enterography[J]. Minerva Gastroenterol Dietol, 2019, 65(4): 319-334. DOI: 10.23736/S1121-421X.19.02639-4.
doi: 10.23736/S1121-421X.19.02639-4 pmid: 31760740 |
[8] |
Schofield JB, Haboubi N. Histopathological mimics of inflammatory bowel disease[J]. Inflamm Bowel Dis, 2020, 26(7): 994-1009. DOI: 10.1093/ibd/izz232.
doi: 10.1093/ibd/izz232 pmid: 31599934 |
[9] |
Baumgartner M, Lang M, Holley H, et al. Mucosal biofilms are an endoscopic feature of irritable bowel syndrome and ulcerative colitis[J]. Gastroenterology, 2021, 161(4): 1245-1256.e20. DOI: 10.1053/j.gastro.2021.06.024.
doi: 10.1053/j.gastro.2021.06.024 pmid: 34146566 |
[10] |
Ben-Horin S, Lahat A, Amitai MM, et al. Assessment of small bowel mucosal healing by video capsule endoscopy for the prediction of short-term and long-term risk of Crohn's disease flare: a prospective cohort study[J]. Lancet Gastroenterol Hepatol, 2019, 4(7): 519-528. DOI: 10.1016/S2468-1253(19)30088-3.
doi: 10.1016/S2468-1253(19)30088-3 |
[11] |
Rai M, Hookey L, Bechara R. A case of radiation-induced enteritis diagnosed by video capsule endoscopy[J]. Gastrointest Endosc, 2019, 90(2): 315-316. DOI: 10.1016/j.gie.2019.03.027.
doi: S0016-5107(19)30218-4 pmid: 30935933 |
[12] |
Omori T, Kambayashi H, Murasugi S, et al. Evaluation of intestinal patency with the patency capsule: the twenty-four hour assessment method[J]. Digestion, 2019, 100(3): 176-185. DOI: 10.1159/000494717.
doi: 10.1159/000494717 pmid: 30463059 |
[13] |
Lu W, Xie Y, Huang B, et al. Platelet-derived growth factor C signaling is a potential therapeutic target for radiation proctopathy[J]. Sci Transl Med, 2021, 13(582): eabc2344. DOI: 10.1126/scitranslmed.abc2344.
doi: 10.1126/scitranslmed.abc2344 |
[14] |
Hille A, Schmidt-Giese E, Hermann RM, et al. A prospective study of faecal calprotectin and lactoferrin in the monitoring of acute radiation proctitis in prostate cancer treatment[J]. Scand J Gastroenterol, 2008, 43(1): 52-58. DOI: 10.1080/00365520701579985.
doi: 10.1080/00365520701579985 |
[15] |
Wang JW, Kuo CH, Kuo FC, et al. Fecal microbiota transplantation: review and update[J]. J Formos Med Assoc, 2019, 118 Suppl 1: S23-S31. DOI: 10.1016/j.jfma.2018.08.011.
doi: 10.1016/j.jfma.2018.08.011 |
[16] |
Ding X, Li Q, Li P, et al. Fecal microbiota transplantation: a promising treatment for radiation enteritis?[J]. Radiother Oncol, 2020, 143: 12-18. DOI: 10.1016/j.radonc.2020.01.011.
doi: S0167-8140(20)30023-2 pmid: 32044171 |
[17] |
Cui M, Xiao H, Li Y, et al. Faecal microbiota transplantation protects against radiation-induced toxicity[J]. EMBO Mol Med, 2017, 9(4): 448-461. DOI: 10.15252/emmm.201606932.
doi: 10.15252/emmm.201606932 pmid: 28242755 |
[18] |
Xiao HW, Cui M, Li Y, et al. Gut microbiota-derived indole 3-propionic acid protects against radiation toxicity via retaining acyl-CoA-binding protein[J]. Microbiome, 2020, 8(1): 69. DOI: 10.1186/s40168-020-00845-6.
doi: 10.1186/s40168-020-00845-6 |
[19] |
Jang H, Lee J, Park S, et al. Baicalein mitigates radiation-induced enteritis by improving endothelial dysfunction[J]. Front Pharmacol, 2019, 10: 892. DOI: 10.3389/fphar.2019.00892.
doi: 10.3389/fphar.2019.00892 pmid: 31474856 |
[20] |
Ito I, Loucas BD, Suzuki S, et al. Glycyrrhizin protects γ-irradiated mice from gut bacteria-associated infectious complications by improving miR-222-associated Gas5 RNA reduction in macrophages of the bacterial translocation site[J]. J Immunol, 2020, 204(5): 1255-1262. DOI: 10.4049/jimmunol.1900949.
doi: 10.4049/jimmunol.1900949 |
[21] |
Hou Q, Liu L, Dong Y, et al. Effects of thymoquinone on radiation enteritis in mice[J]. Sci Rep, 2018, 8(1): 15122. DOI: 10.1038/s41598-018-33214-3.
doi: 10.1038/s41598-018-33214-3 pmid: 30310156 |
[22] |
Tiwari M, Dixit B, Parvez S, et al. EGCG, a tea polyphenol, as a potential mitigator of hematopoietic radiation injury in mice[J]. Biomed Pharmacother, 2017, 88: 203-209. DOI: 10.1016/j.biopha.2016.12.129.
doi: S0753-3322(16)32669-5 pmid: 28107697 |
[23] |
Zhang J, Pang Z, Zhang Y, et al. Genistein from Fructus sophorae protects mice from radiation-induced intestinal injury[J]. Front Pharmacol, 2021, 12: 655652. DOI: 10.3389/fphar.2021.655652.
doi: 10.3389/fphar.2021.655652 |
[24] |
Wang M, Dong Y, Wu J, et al. Baicalein ameliorates ionizing radiation-induced injuries by rebalancing gut microbiota and inhibiting apoptosis[J]. Life Sci, 2020, 261: 118463. DOI: 10.1016/j.lfs.2020.118463.
doi: 10.1016/j.lfs.2020.118463 |
[25] |
Kim HG, Jang SS, Lee JS, et al. Panax ginseng Meyer prevents radiation-induced liver injury via modulation of oxidative stress and apoptosis[J]. J Ginseng Res, 2017, 41(2): 159-168. DOI: 10.1016/j.jgr.2016.02.006.
doi: 10.1016/j.jgr.2016.02.006 |
[26] |
Cagin YF, Parlakpinar H, Vardi N, et al. Protective effects of apocynin against ionizing radiation-induced hepatotoxicity in rats[J]. Biotech Histochem, 2022, 97(3): 228-235. DOI: 10.1080/10520295.2021.1936641.
doi: 10.1080/10520295.2021.1936641 |
[27] |
陈代词, 钟清华, 陈锶. 放射性肠损伤血管病变基础及其诊疗进展[J]. 中华胃肠外科杂志, 2020, 23(8): 817-822. DOI: 10.3760/cma.j.cn.441530-20200511-00270.
doi: 10.3760/cma.j.cn.441530-20200511-00270 |
[28] |
Xu C, Liu Z, Xiao J. Ferroptosis: a double-edged sword in gastrointestinal disease[J]. Int J Mol Sci, 2021, 22(22): 12403. DOI: 10.3390/ijms222212403.
doi: 10.3390/ijms222212403 |
[29] | Wang JT, Xie WQ, Liu FQ, et al. NADH protect against radiation enteritis by enhancing autophagy and inhibiting inflammation through PI3K/AKT pathway[J]. Am J Transl Res, 2018, 10(6): 1713-1721. |
[30] |
Dar HH, Epperly MW, Tyurin VA, et al. P. aeruginosa augments irradiation injury via 15-lipoxygenase-catalyzed generation of 15-HpETE-PE and induction of theft-ferroptosis[J]. JCI Insight, 2022, 7(4): e156013. DOI: 10.1172/jci.insight.156013.
doi: 10.1172/jci.insight.156013 |
[31] |
Xu Y, Tu W, Sun D, et al. Nrf2 alleviates radiation-induced rectal injury by inhibiting of necroptosis[J]. Biochem Biophys Res Commun, 2021, 554: 49-55. DOI: 10.1016/j.bbrc.2021.03.004.
doi: 10.1016/j.bbrc.2021.03.004 |
[32] |
Liu L, Liang L, Yang C, et al. Extracellular vesicles of Fusobacterium nucleatum compromise intestinal barrier through targeting RIPK1-mediated cell death pathway[J]. Gut Microbes, 2021, 13(1): 1-20. DOI: 10.1080/19490976.2021.1902718.
doi: 10.1080/19490976.2021.1902718 |
[33] |
安江宏, 钱莘, 骆璞, 等. 肠道微生态与肿瘤的诊断和治疗[J]. 国际肿瘤学杂志, 2021, 48(7): 436-440. DOI: 10.3760/cma.j.cn371439-20201019-00084.
doi: 10.3760/cma.j.cn371439-20201019-00084 |
[34] |
Wang Z, Wang Q, Wang X, et al. Gut microbial dysbiosis is associated with development and progression of radiation enteritis during pelvic radiotherapy[J]. J Cell Mol Med, 2019, 23(5): 3747-3756. DOI: 10.1111/jcmm.14289.
doi: 10.1111/jcmm.14289 pmid: 30908851 |
[35] |
Guo H, Chou WC, Lai Y, et al. Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites[J]. Science, 2020, 370(6516): eaay9097. DOI: 10.1126/science.aay9097.
doi: 10.1126/science.aay9097 |
[36] |
Li Y, Yan H, Zhang Y, et al. Alterations of the gut microbiome composition and lipid metabolic profile in radiation enteritis[J]. Front Cell Infect Microbiol, 2020, 10: 541178. DOI: 10.3389/fcimb.2020.541178.
doi: 10.3389/fcimb.2020.541178 |
[37] |
Song S, Chen D, Ma T, et al. Molecular mechanism of acute radiation enteritis revealed using proteomics and biological signaling network analysis in rats[J]. Dig Dis Sci, 2014, 59(11): 2704-2713. DOI: 10.1007/s10620-014-3224-1.
doi: 10.1007/s10620-014-3224-1 |
[38] |
Yang C, Yang J, Xia M, et al. Efficacy of compound herbal medicine Tong-Xie-Yao-Fang for acute radiation enteritis and its potential mechanisms: evidence from transcriptome analysis[J]. Biomed Res Int, 2020, 2020: 5481653. DOI: 10.1155/2020/5481653.
doi: 10.1155/2020/5481653 |
[39] |
Bodalal Z, Trebeschi S, Nguyen-Kim TDL, et al. Radiogenomics: bridging imaging and genomics[J]. Abdom Radiol (NY), 2019, 44(6): 1960-1984. DOI: 10.1007/s00261-019-02028-w.
doi: 10.1007/s00261-019-02028-w pmid: 31049614 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||