
Journal of International Oncology ›› 2021, Vol. 48 ›› Issue (10): 614-617.doi: 10.3760/cma.j.cn371439-20201208-00120
• Reviews • Previous Articles Next Articles
					
													Wang Ailing1, Niu Ximei1, Huang Guofu1(
), Leng Xiaoling2(
)
												  
						
						
						
					
				
Received:2020-12-08
															
							
																	Revised:2021-03-04
															
							
															
							
																	Online:2021-10-08
															
							
																	Published:2021-11-24
															
						Contact:
								Huang Guofu,Leng Xiaoling   
																	E-mail:2508416490@qq.com;58281413@qq.com
																					Supported by:Wang Ailing, Niu Ximei, Huang Guofu, Leng Xiaoling. Role of cancer-associated fibroblasts in breast cancer[J]. Journal of International Oncology, 2021, 48(10): 614-617.
| [1] |  
											 郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2019, 41(1):19-28. DOI: 10.3760/cma.j.issn.0253-3766.2019.01.008. 
																							 doi: 10.3760/cma.j.issn.0253-3766.2019.01.008  | 
										
| [2] |  
											 Ferlay J, Colombet M, Soerjomataram I, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries and 25 major cancers in 2018[J]. Eur J Cancer, 2018, 103:356-387. DOI: 10.1016/j.ejca.2018.07.005. 
																							 doi: S0959-8049(18)30955-9 pmid: 30100160  | 
										
| [3] |  
											 Shimura T, Sasatani M, Kawai H, et al. Radiation-induced myofibroblasts promote tumor growth via mitochondrial ROS-activated TGFβ signaling[J]. Mol Cancer Res, 2018, 16(11):1676-1686. DOI: 10.1158/1541-7786.MCR-18-0321. 
																							 doi: 10.1158/1541-7786.MCR-18-0321  | 
										
| [4] |  
											 Nurmik M, Ullmann P, Rodriguez F, et al. In search of definitions: cancer-associated fibroblasts and their markers[J]. Int J Cancer, 2020, 146(4):895-905. DOI: 10.1002/ijc.32193. 
																							 doi: 10.1002/ijc.32193  | 
										
| [5] |  
											 Monteran L, Erez N. The dark side of fibroblasts: cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment[J]. Front Immunol, 2019, 10:1835. DOI: 10.3389/fimmu.2019.01835. 
																							 doi: 10.3389/fimmu.2019.01835 pmid: 31428105  | 
										
| [6] |  
											 Bartoschek M, Oskolkov N, Bocci M, et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing[J]. Nat Commun, 2018, 9(1):5150. DOI: 10.1038/s41467-018-07582-3. 
																							 doi: 10.1038/s41467-018-07582-3 pmid: 30514914  | 
										
| [7] |  
											 Li A, Chen P, Leng Y, et al. Histone deacetylase 6 regulates the immunosuppressive properties of cancer-associated fibroblasts in breast cancer through the STAT3-COX2-dependent pathway[J]. Oncogene, 2018, 37(45):5952-5966. DOI: 10.1038/s41388-018-0379-9. 
																							 doi: 10.1038/s41388-018-0379-9  | 
										
| [8] |  
											 Gok Yavuz B, Gunaydin G, Gedik ME, et al. Cancer associated fibroblasts sculpt tumour microenvironment by recruiting monocytes and inducing immunosuppressive PD-1+ TAMs[J]. Sci Rep, 2019, 9(1):3172. DOI: 10.1038/s41598-019-39553-z. 
																							 doi: 10.1038/s41598-019-39553-z  | 
										
| [9] |  
											 Kieffer Y, Hocine HR, Gentric G, et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer[J]. Cancer Discov, 2020, 10(9):1330-1351. DOI: 10.1158/2159-8290.CD-19-1384. 
																							 doi: 10.1158/2159-8290.CD-19-1384 pmid: 32434947  | 
										
| [10] |  
											 Cremasco V, Astarita JL, Grauel AL, et al. FAP delineates heterogeneous and functionally divergent stromal cells in immune-excluded breast tumors[J]. Cancer Immunol Res, 2018, 6(12):1472-1485. DOI: 10.1158/2326-6066.CIR-18-0098. 
																							 doi: 10.1158/2326-6066.CIR-18-0098 pmid: 30266714  | 
										
| [11] |  
											 Chen IX, Chauhan VP, Posada J, et al. Blocking CXCR4 alleviates desmoplasia, increases T-lymphocyte infiltration, and improves immunotherapy in metastatic breast cancer[J]. Proc Natl Acad Sci U S A, 2019, 116(10):4558-4566. DOI: 10.1073/pnas.1815515116. 
																							 doi: 10.1073/pnas.1815515116 pmid: 30700545  | 
										
| [12] |  
											 Morgan MM, Livingston MK, Warrick JW, et al. Mammary fibroblasts reduce apoptosis and speed estrogen-induced hyperplasia in an organotypic MCF7-derived duct model[J]. Sci Rep, 2018, 8(1):7139. DOI: 10.1038/s41598-018-25461-1. 
																							 doi: 10.1038/s41598-018-25461-1 pmid: 29740030  | 
										
| [13] |  
											 Feng F, Zhu X, Wang C, et al. Downregulation of hypermethylated in cancer-1 by miR-4532 promotes adriamycin resistance in breast cancer cells[J]. Cancer Cell Int, 2018, 18:127. DOI: 10.1186/s12935-018-0616-x. 
																							 doi: 10.1186/s12935-018-0616-x pmid: 30202238  | 
										
| [14] |  
											 Suh J, Kim DH, Lee YH, et al. Fibroblast growth factor-2, derived from cancer-associated fibroblasts, stimulates growth and progression of human breast cancer cells via FGFR1 signaling[J]. Mol Carcinog, 2020, 59(9):1028-1040. DOI: 10.1002/mc.23233. 
																							 doi: 10.1002/mc.23233  | 
										
| [15] |  
											 Ershaid N, Sharon Y, Doron H, et al. NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis[J]. Nat Commun, 2019, 10(1):4375. DOI: 10.1038/s41467-019-12370-8. 
																							 doi: 10.1038/s41467-019-12370-8 pmid: 31558756  | 
										
| [16] |  
											 Lappano R, Talia M, Cirillo F, et al. The IL1β-IL1R signaling is involved in the stimulatory effects triggered by hypoxia in breast cancer cells and cancer-associated fibroblasts (CAFs)[J]. J Exp Clin Cancer Res, 2020, 39(1):153. DOI: 10.1186/s13046-020-01667-y. 
																							 doi: 10.1186/s13046-020-01667-y  | 
										
| [17] |  
											 Ren J, Smid M, Iaria J, et al. Cancer-associated fibroblast-derived Gremlin 1 promotes breast cancer progression[J]. Breast Cancer Res, 2019, 21(1):109. DOI: 10.1186/s13058-019-1194-0. 
																							 doi: 10.1186/s13058-019-1194-0  | 
										
| [18] |  
											 Wen S, Hou Y, Fu L, et al. Cancer-associated fibroblast (CAF)-derived IL32 promotes breast cancer cell invasion and metastasis via integrin β3-p38 MAPK signalling[J]. Cancer Lett, 2019, 442:320-332. DOI: 10.1016/j.canlet.2018.10.015. 
																							 doi: 10.1016/j.canlet.2018.10.015  | 
										
| [19] |  
											 Kugeratski FG, Atkinson SJ, Neilson LJ, et al. Hypoxic cancer-associated fibroblasts increase NCBP2-AS2/HIAR to promote endothelial sprouting through enhanced VEGF signaling[J]. Sci Signal, 2019, 12(567): eaan8247. DOI: 10.1126/scisignal.aan8247. 
																							 doi: 10.1126/scisignal.aan8247  | 
										
| [20] |  
											 De Francesco EM, Sims AH, Maggiolini M, et al. GPER mediates the angiocrine actions induced by IGF1 through the HIF-1α/VEGF pathway in the breast tumor microenvironment[J]. Breast Cancer Res, 2017, 19(1):129. DOI: 10.1186/s13058-017-0923-5. 
																							 doi: 10.1186/s13058-017-0923-5  | 
										
| [21] |  
											 Limoge M, Safina A, Beattie A, et al. Tumor-fibroblast interactions stimulate tumor vascularization by enhancing cytokine-driven production of MMP9 by tumor cells[J]. Oncotarget, 2017, 8(22):35592-35608. DOI: 10.18632/oncotarget.16022. 
																							 doi: 10.18632/oncotarget.16022  | 
										
| [22] |  
											 Eiro N, González L, Martínez-Ordoñez A, et al. Cancer-associated fibroblasts affect breast cancer cell gene expression, invasion and angiogenesis[J]. Cell Oncol (Dordr), 2018, 41(4):369-378. DOI: 10.1007/s13402-018-0371-y. 
																							 doi: 10.1007/s13402-018-0371-y  | 
										
| [23] |  
											 Hu YB, Yan C, Mu L, et al. Correction: Exosomal Wnt-induced dedifferentiation of colorectal cancer cells contributes to chemotherapy resistance[J]. Oncogene, 2019, 38(35):6319-6321. DOI: 10.1038/s41388-019-0863-x. 
																							 doi: 10.1038/s41388-019-0863-x pmid: 31366984  | 
										
| [24] |  
											 Fernández-Nogueira P, Mancino M, Fuster G, et al. Tumor-associated fibroblasts promote HER2-targeted therapy resistance through FGFR2 activation[J]. Clin Cancer Res, 2020, 26(6):1432-1448. DOI: 10.1158/1078-0432.CCR-19-0353. 
																							 doi: 10.1158/1078-0432.CCR-19-0353 pmid: 31699826  | 
										
| [25] |  
											 Cui Q, Wang B, Li K, et al. Upregulating MMP-1 in carcinoma-associated fibroblasts reduces the efficacy of Taxotere on breast cancer synergized by collagen Ⅳ[J]. Oncol Lett, 2018, 16(3):3537-3544. DOI: 10.3892/ol.2018.9092. 
																							 doi: 10.3892/ol.2018.9092  | 
										
| [26] |  
											 Suh J, Kim DH, Surh YJ. Resveratrol suppresses migration, invasion and stemness of human breast cancer cells by interfering with tumor-stromal cross-talk[J]. Arch Biochem Biophys, 2018, 643:62-71. DOI: 10.1016/j.abb.2018.02.011. 
																							 doi: 10.1016/j.abb.2018.02.011  | 
										
| [27] |  
											 Barone I, Vircillo V, Giordano C, et al. Activation of farnesoid X receptor impairs the tumor-promoting function of breast cancer-associated fibroblasts[J]. Cancer Lett, 2018, 437:89-99. DOI: 10.1016/j.canlet.2018.08.026. 
																							 doi: S0304-3835(18)30544-5 pmid: 30176263  | 
										
| [28] |  
											 Geng F, Guo J, Guo QQ, et al. A DNA vaccine expressing an optimized secreted FAPα induces enhanced anti-tumor activity by altering the tumor microenvironment in a murine model of breast cancer[J]. Vaccine, 2019, 37(31):4382-4391. DOI: 10.1016/j.vaccine.2019.06.012. 
																							 doi: S0264-410X(19)30773-X pmid: 31202521  | 
										
| [29] |  
											 Fang J, Xiao L, Joo KI, et al. A potent immunotoxin targeting fibroblast activation protein for treatment of breast cancer in mice[J]. Int J Cancer, 2016, 138(4):1013-1023. DOI: 10.1002/ijc.29831. 
																							 doi: 10.1002/ijc.29831  | 
										
| [30] |  
											 Eiro N, Cid S, Fernández B, et al. MMP11 expression in intratumoral inflammatory cells in breast cancer[J]. Histopathology, 2019, 75(6):916-930. DOI: 10.1111/his.13956. 
																							 doi: 10.1111/his.13956  | 
										
| [1] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. | 
| [2] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. | 
| [3] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. | 
| [4] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. | 
| [5] | Chen Boguang, Wang Sugui, Zhang Yongjie. Role of serum cholinesterase and inflammatory markers in the prognosis of stage ⅠA -ⅢA breast cancer [J]. Journal of International Oncology, 2024, 51(2): 73-82. | 
| [6] | Liu Xiaodi, Su Jianfei, Zhang Jingxian, Wei Xueqin, Jia Yingjie. Research progress of myeloid-derived suppressor cells in tumor angiogenesis [J]. Journal of International Oncology, 2024, 51(1): 50-54. | 
| [7] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. | 
| [8] | Wang Jing, Xu Wenting. Value of NLR, CEA combined with coagulation indicators in the differential diagnosis of benign and malignant breast nodules with a diameter ≤ 1.0 cm [J]. Journal of International Oncology, 2023, 50(9): 520-526. | 
| [9] | Feng Chengtian, Huang Furong, Cao Shiyu, Wang Jianyu, Nanding Abiyasi, Jiang Yongdong, Zhu Juanying. Relationships between HER2 protein expression and imaging features in HER2 positive breast cancer patients [J]. Journal of International Oncology, 2023, 50(9): 527-531. | 
| [10] | Feng Dongxu, Wu Wei, Gao Pingfa, Wang Jun, Shi Lijuan, Chen Dawei, Li Wenbing, Zhang Meifeng. Effects of miR-451 on glycolysis and apoptosis of breast cancer cells by regulating Rho/ROCK1 pathway [J]. Journal of International Oncology, 2023, 50(8): 449-456. | 
| [11] | Pan Shulan, Liu Chang, He Ping. Effect of fritinib on angiogenesis, tumor growth and IRE1-ASK1-JNK pathway in triple negative breast cancer [J]. Journal of International Oncology, 2023, 50(8): 457-462. | 
| [12] | Wang Wende, Zeng De. Research progress on the mechanism of endocrine therapy resistance for breast cancer [J]. Journal of International Oncology, 2023, 50(6): 352-356. | 
| [13] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai. Research progress on the application of combining radiotherapy and systemic therapy in breast cancer [J]. Journal of International Oncology, 2023, 50(6): 362-367. | 
| [14] | Xu Meng, Jiang Wei, Zhu Haitao, Cao Xiongfeng. Research progress of cancer-associated fibroblasts in tumor radiotherapy resistance [J]. Journal of International Oncology, 2023, 50(4): 227-230. | 
| [15] | Ding Hao, Ying Jintao, Fu Maoyong. Research progress of CAR-T in the treatment of esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(4): 231-235. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||