Journal of International Oncology ›› 2021, Vol. 48 ›› Issue (10): 614-617.doi: 10.3760/cma.j.cn371439-20201208-00120
• Reviews • Previous Articles Next Articles
Wang Ailing1, Niu Ximei1, Huang Guofu1(), Leng Xiaoling2()
Received:
2020-12-08
Revised:
2021-03-04
Online:
2021-10-08
Published:
2021-11-24
Contact:
Huang Guofu,Leng Xiaoling
E-mail:2508416490@qq.com;58281413@qq.com
Supported by:
Wang Ailing, Niu Ximei, Huang Guofu, Leng Xiaoling. Role of cancer-associated fibroblasts in breast cancer[J]. Journal of International Oncology, 2021, 48(10): 614-617.
[1] |
郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2019, 41(1):19-28. DOI: 10.3760/cma.j.issn.0253-3766.2019.01.008.
doi: 10.3760/cma.j.issn.0253-3766.2019.01.008 |
[2] |
Ferlay J, Colombet M, Soerjomataram I, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries and 25 major cancers in 2018[J]. Eur J Cancer, 2018, 103:356-387. DOI: 10.1016/j.ejca.2018.07.005.
doi: S0959-8049(18)30955-9 pmid: 30100160 |
[3] |
Shimura T, Sasatani M, Kawai H, et al. Radiation-induced myofibroblasts promote tumor growth via mitochondrial ROS-activated TGFβ signaling[J]. Mol Cancer Res, 2018, 16(11):1676-1686. DOI: 10.1158/1541-7786.MCR-18-0321.
doi: 10.1158/1541-7786.MCR-18-0321 |
[4] |
Nurmik M, Ullmann P, Rodriguez F, et al. In search of definitions: cancer-associated fibroblasts and their markers[J]. Int J Cancer, 2020, 146(4):895-905. DOI: 10.1002/ijc.32193.
doi: 10.1002/ijc.32193 |
[5] |
Monteran L, Erez N. The dark side of fibroblasts: cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment[J]. Front Immunol, 2019, 10:1835. DOI: 10.3389/fimmu.2019.01835.
doi: 10.3389/fimmu.2019.01835 pmid: 31428105 |
[6] |
Bartoschek M, Oskolkov N, Bocci M, et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing[J]. Nat Commun, 2018, 9(1):5150. DOI: 10.1038/s41467-018-07582-3.
doi: 10.1038/s41467-018-07582-3 pmid: 30514914 |
[7] |
Li A, Chen P, Leng Y, et al. Histone deacetylase 6 regulates the immunosuppressive properties of cancer-associated fibroblasts in breast cancer through the STAT3-COX2-dependent pathway[J]. Oncogene, 2018, 37(45):5952-5966. DOI: 10.1038/s41388-018-0379-9.
doi: 10.1038/s41388-018-0379-9 |
[8] |
Gok Yavuz B, Gunaydin G, Gedik ME, et al. Cancer associated fibroblasts sculpt tumour microenvironment by recruiting monocytes and inducing immunosuppressive PD-1+ TAMs[J]. Sci Rep, 2019, 9(1):3172. DOI: 10.1038/s41598-019-39553-z.
doi: 10.1038/s41598-019-39553-z |
[9] |
Kieffer Y, Hocine HR, Gentric G, et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer[J]. Cancer Discov, 2020, 10(9):1330-1351. DOI: 10.1158/2159-8290.CD-19-1384.
doi: 10.1158/2159-8290.CD-19-1384 pmid: 32434947 |
[10] |
Cremasco V, Astarita JL, Grauel AL, et al. FAP delineates heterogeneous and functionally divergent stromal cells in immune-excluded breast tumors[J]. Cancer Immunol Res, 2018, 6(12):1472-1485. DOI: 10.1158/2326-6066.CIR-18-0098.
doi: 10.1158/2326-6066.CIR-18-0098 pmid: 30266714 |
[11] |
Chen IX, Chauhan VP, Posada J, et al. Blocking CXCR4 alleviates desmoplasia, increases T-lymphocyte infiltration, and improves immunotherapy in metastatic breast cancer[J]. Proc Natl Acad Sci U S A, 2019, 116(10):4558-4566. DOI: 10.1073/pnas.1815515116.
doi: 10.1073/pnas.1815515116 pmid: 30700545 |
[12] |
Morgan MM, Livingston MK, Warrick JW, et al. Mammary fibroblasts reduce apoptosis and speed estrogen-induced hyperplasia in an organotypic MCF7-derived duct model[J]. Sci Rep, 2018, 8(1):7139. DOI: 10.1038/s41598-018-25461-1.
doi: 10.1038/s41598-018-25461-1 pmid: 29740030 |
[13] |
Feng F, Zhu X, Wang C, et al. Downregulation of hypermethylated in cancer-1 by miR-4532 promotes adriamycin resistance in breast cancer cells[J]. Cancer Cell Int, 2018, 18:127. DOI: 10.1186/s12935-018-0616-x.
doi: 10.1186/s12935-018-0616-x pmid: 30202238 |
[14] |
Suh J, Kim DH, Lee YH, et al. Fibroblast growth factor-2, derived from cancer-associated fibroblasts, stimulates growth and progression of human breast cancer cells via FGFR1 signaling[J]. Mol Carcinog, 2020, 59(9):1028-1040. DOI: 10.1002/mc.23233.
doi: 10.1002/mc.23233 |
[15] |
Ershaid N, Sharon Y, Doron H, et al. NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis[J]. Nat Commun, 2019, 10(1):4375. DOI: 10.1038/s41467-019-12370-8.
doi: 10.1038/s41467-019-12370-8 pmid: 31558756 |
[16] |
Lappano R, Talia M, Cirillo F, et al. The IL1β-IL1R signaling is involved in the stimulatory effects triggered by hypoxia in breast cancer cells and cancer-associated fibroblasts (CAFs)[J]. J Exp Clin Cancer Res, 2020, 39(1):153. DOI: 10.1186/s13046-020-01667-y.
doi: 10.1186/s13046-020-01667-y |
[17] |
Ren J, Smid M, Iaria J, et al. Cancer-associated fibroblast-derived Gremlin 1 promotes breast cancer progression[J]. Breast Cancer Res, 2019, 21(1):109. DOI: 10.1186/s13058-019-1194-0.
doi: 10.1186/s13058-019-1194-0 |
[18] |
Wen S, Hou Y, Fu L, et al. Cancer-associated fibroblast (CAF)-derived IL32 promotes breast cancer cell invasion and metastasis via integrin β3-p38 MAPK signalling[J]. Cancer Lett, 2019, 442:320-332. DOI: 10.1016/j.canlet.2018.10.015.
doi: 10.1016/j.canlet.2018.10.015 |
[19] |
Kugeratski FG, Atkinson SJ, Neilson LJ, et al. Hypoxic cancer-associated fibroblasts increase NCBP2-AS2/HIAR to promote endothelial sprouting through enhanced VEGF signaling[J]. Sci Signal, 2019, 12(567): eaan8247. DOI: 10.1126/scisignal.aan8247.
doi: 10.1126/scisignal.aan8247 |
[20] |
De Francesco EM, Sims AH, Maggiolini M, et al. GPER mediates the angiocrine actions induced by IGF1 through the HIF-1α/VEGF pathway in the breast tumor microenvironment[J]. Breast Cancer Res, 2017, 19(1):129. DOI: 10.1186/s13058-017-0923-5.
doi: 10.1186/s13058-017-0923-5 |
[21] |
Limoge M, Safina A, Beattie A, et al. Tumor-fibroblast interactions stimulate tumor vascularization by enhancing cytokine-driven production of MMP9 by tumor cells[J]. Oncotarget, 2017, 8(22):35592-35608. DOI: 10.18632/oncotarget.16022.
doi: 10.18632/oncotarget.16022 |
[22] |
Eiro N, González L, Martínez-Ordoñez A, et al. Cancer-associated fibroblasts affect breast cancer cell gene expression, invasion and angiogenesis[J]. Cell Oncol (Dordr), 2018, 41(4):369-378. DOI: 10.1007/s13402-018-0371-y.
doi: 10.1007/s13402-018-0371-y |
[23] |
Hu YB, Yan C, Mu L, et al. Correction: Exosomal Wnt-induced dedifferentiation of colorectal cancer cells contributes to chemotherapy resistance[J]. Oncogene, 2019, 38(35):6319-6321. DOI: 10.1038/s41388-019-0863-x.
doi: 10.1038/s41388-019-0863-x pmid: 31366984 |
[24] |
Fernández-Nogueira P, Mancino M, Fuster G, et al. Tumor-associated fibroblasts promote HER2-targeted therapy resistance through FGFR2 activation[J]. Clin Cancer Res, 2020, 26(6):1432-1448. DOI: 10.1158/1078-0432.CCR-19-0353.
doi: 10.1158/1078-0432.CCR-19-0353 pmid: 31699826 |
[25] |
Cui Q, Wang B, Li K, et al. Upregulating MMP-1 in carcinoma-associated fibroblasts reduces the efficacy of Taxotere on breast cancer synergized by collagen Ⅳ[J]. Oncol Lett, 2018, 16(3):3537-3544. DOI: 10.3892/ol.2018.9092.
doi: 10.3892/ol.2018.9092 |
[26] |
Suh J, Kim DH, Surh YJ. Resveratrol suppresses migration, invasion and stemness of human breast cancer cells by interfering with tumor-stromal cross-talk[J]. Arch Biochem Biophys, 2018, 643:62-71. DOI: 10.1016/j.abb.2018.02.011.
doi: 10.1016/j.abb.2018.02.011 |
[27] |
Barone I, Vircillo V, Giordano C, et al. Activation of farnesoid X receptor impairs the tumor-promoting function of breast cancer-associated fibroblasts[J]. Cancer Lett, 2018, 437:89-99. DOI: 10.1016/j.canlet.2018.08.026.
doi: S0304-3835(18)30544-5 pmid: 30176263 |
[28] |
Geng F, Guo J, Guo QQ, et al. A DNA vaccine expressing an optimized secreted FAPα induces enhanced anti-tumor activity by altering the tumor microenvironment in a murine model of breast cancer[J]. Vaccine, 2019, 37(31):4382-4391. DOI: 10.1016/j.vaccine.2019.06.012.
doi: S0264-410X(19)30773-X pmid: 31202521 |
[29] |
Fang J, Xiao L, Joo KI, et al. A potent immunotoxin targeting fibroblast activation protein for treatment of breast cancer in mice[J]. Int J Cancer, 2016, 138(4):1013-1023. DOI: 10.1002/ijc.29831.
doi: 10.1002/ijc.29831 |
[30] |
Eiro N, Cid S, Fernández B, et al. MMP11 expression in intratumoral inflammatory cells in breast cancer[J]. Histopathology, 2019, 75(6):916-930. DOI: 10.1111/his.13956.
doi: 10.1111/his.13956 |
[1] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[2] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
[3] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[4] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[5] | Chen Boguang, Wang Sugui, Zhang Yongjie. Role of serum cholinesterase and inflammatory markers in the prognosis of stage ⅠA -ⅢA breast cancer [J]. Journal of International Oncology, 2024, 51(2): 73-82. |
[6] | Liu Xiaodi, Su Jianfei, Zhang Jingxian, Wei Xueqin, Jia Yingjie. Research progress of myeloid-derived suppressor cells in tumor angiogenesis [J]. Journal of International Oncology, 2024, 51(1): 50-54. |
[7] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. |
[8] | Wang Jing, Xu Wenting. Value of NLR, CEA combined with coagulation indicators in the differential diagnosis of benign and malignant breast nodules with a diameter ≤ 1.0 cm [J]. Journal of International Oncology, 2023, 50(9): 520-526. |
[9] | Feng Chengtian, Huang Furong, Cao Shiyu, Wang Jianyu, Nanding Abiyasi, Jiang Yongdong, Zhu Juanying. Relationships between HER2 protein expression and imaging features in HER2 positive breast cancer patients [J]. Journal of International Oncology, 2023, 50(9): 527-531. |
[10] | Feng Dongxu, Wu Wei, Gao Pingfa, Wang Jun, Shi Lijuan, Chen Dawei, Li Wenbing, Zhang Meifeng. Effects of miR-451 on glycolysis and apoptosis of breast cancer cells by regulating Rho/ROCK1 pathway [J]. Journal of International Oncology, 2023, 50(8): 449-456. |
[11] | Pan Shulan, Liu Chang, He Ping. Effect of fritinib on angiogenesis, tumor growth and IRE1-ASK1-JNK pathway in triple negative breast cancer [J]. Journal of International Oncology, 2023, 50(8): 457-462. |
[12] | Wang Wende, Zeng De. Research progress on the mechanism of endocrine therapy resistance for breast cancer [J]. Journal of International Oncology, 2023, 50(6): 352-356. |
[13] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai. Research progress on the application of combining radiotherapy and systemic therapy in breast cancer [J]. Journal of International Oncology, 2023, 50(6): 362-367. |
[14] | Xu Meng, Jiang Wei, Zhu Haitao, Cao Xiongfeng. Research progress of cancer-associated fibroblasts in tumor radiotherapy resistance [J]. Journal of International Oncology, 2023, 50(4): 227-230. |
[15] | Ding Hao, Ying Jintao, Fu Maoyong. Research progress of CAR-T in the treatment of esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(4): 231-235. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||