
Journal of International Oncology ›› 2020, Vol. 47 ›› Issue (6): 372-376.doi: 10.3760/cma.j.cn371439-20191206-00039
• Review • Previous Articles Next Articles
					
													Xu Yiyue, Zhao Shaorong, Liu Jingjing, Zhang Jin(
)
												  
						
						
						
					
				
Received:2019-12-06
															
							
																	Revised:2019-12-19
															
							
															
							
																	Online:2020-06-08
															
							
																	Published:2020-07-22
															
						Contact:
								Zhang Jin   
																	E-mail:zhangjintjmuch1@163.com
																					Supported by:Xu Yiyue, Zhao Shaorong, Liu Jingjing, Zhang Jin. Mechanisms of ferroptosis and its significance in breast cancer therapy[J]. Journal of International Oncology, 2020, 47(6): 372-376.
| [1] |  
											 Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012,149(5):1060-1072. DOI: 10.1016/j.cell.2012.03.042. 
																							 doi: 10.1016/j.cell.2012.03.042  | 
										
| [2] |  
											 Arosio P, Elia L, Poli M. Ferritin, cellular iron storage and regulation[J]. IUBMB Life, 2017,69(6):414-422. DOI: 10.1002/iub.1621. 
																							 doi: 10.1002/iub.1621 pmid: 28349628  | 
										
| [3] |  
											 Toyokuni S, Ito F, Yamashita K, et al. Iron and thiol redox signaling in cancer: an exquisite balance to escape ferroptosis[J]. Free Radic Biol Med, 2017,108:610-626. DOI: 10.1016/j.freeradbiomed.2017.04.024. 
																							 doi: 10.1016/j.freeradbiomed.2017.04.024 pmid: 28433662  | 
										
| [4] |  
											 Lim JKM, Delaidelli A, Minaker SW, et al. Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance[J]. Proc Natl Acad Sci U S A, 2019,116(19):9433-9442. DOI: 10.1073/pnas.1821323116. 
																							 doi: 10.1073/pnas.1821323116 pmid: 31000598  | 
										
| [5] |  
											 Xu T, Ding W, Ji X, et al. Molecular mechanisms of ferroptosis and its role in cancer therapy[J]. J Cell Mol Med, 2019,23(8):4900-4912. DOI: 10.1111/jcmm.14511. 
																							 doi: 10.1111/jcmm.14511 pmid: 31232522  | 
										
| [6] |  
											 Gao M, Yi J, Zhu J, et al. Role of mitochondria in ferroptosis[J]. Mol Cell, 2019,73(2):354-363.e3.DOI: 10.1016/j.molcel.2018.10.042. 
																							 doi: 10.1016/j.molcel.2018.10.042 pmid: 30581146  | 
										
| [7] |  
											 Zhang K, Wu L, Zhang P, et al. miR-9 regulates ferroptosis by targeting glutamic-oxaloacetic transaminase GOT1 in melanoma[J]. Mol Carcinog, 2018,57(11):1566-1576. DOI: 10.1002/mc.22878. 
																							 doi: 10.1002/mc.22878 pmid: 30035324  | 
										
| [8] |  
											 Luo M, Wu L, Zhang K, et al. miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma[J]. Cell Death Differ, 2018,25(8):1457-1472. DOI: 10.1038/s41418-017-0053-8. 
																							 doi: 10.1038/s41418-017-0053-8 pmid: 29348676  | 
										
| [9] |  
											 Maiorino M, Conrad M, Ursini F. GPx4, lipid peroxidation, and cell death: discoveries, rediscoveries, and open issues[J]. Antioxid Redox Signal, 2018,29(1):61-74. DOI: 10.1089/ars.2017.7115. 
																							 doi: 10.1089/ars.2017.7115 pmid: 28462584  | 
										
| [10] |  
											 Seibt TM, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication[J]. Free Radic Biol Med, 2019,133:144-152. DOI: 10.1016/j.freeradbiomed.2018.09.014. 
																							 doi: 10.1016/j.freeradbiomed.2018.09.014 pmid: 30219704  | 
										
| [11] |  
											 Sui X, Zhang R, Liu S, et al. RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer[J]. Front Pharmacol, 2018,9:1371. DOI: 10.3389/fphar.2018.01371. 
																							 doi: 10.3389/fphar.2018.01371 pmid: 30524291  | 
										
| [12] |  
											 Imai H, Matsuoka M, Kumagai T, et al. Lipid peroxidation-dependent cell death regulated by GPx4 and rerroptosis[J]. Curr Top Microbiol Immunol, 2017,403:143-170. DOI: 10.1007/82_2016_508. 
																							 doi: 10.1007/82_2016_508 pmid: 28204974  | 
										
| [13] |  
											 Fan Z, Wirth AK, Chen D, et al. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis[J]. Oncogenesis, 2017,6(8):e371. DOI: 10.1038/oncsis.2017.65. 
																							 doi: 10.1038/oncsis.2017.65 pmid: 28805788  | 
										
| [14] | Zimta AA, Cenariu D, Irimie A, et al. The role of Nrf2 activity in cancer development and progression[J]. Cancers (Basel), 2019,11(11). E1755. DOI: 10.3390/cancers11111755. | 
| [15] |  
											 Horniblow RD, Bedford M, Hollingworth R, et al. BRAF mutations are associated with increased iron regulatory protein-2 expression in colorectal tumorigenesis[J]. Cancer Sci, 2017,108(6):1135-1143. DOI: 10.1111/cas.13234. 
																							 doi: 10.1111/cas.13234 pmid: 28281325  | 
										
| [16] |  
											 Guo J, Xu B, Han Q, et al. Ferroptosis: a novel anti-tumor action for cisplatin[J]. Cancer Res Treat, 2018,50(2):445-460. DOI: 10.4143/crt.2016.572. 
																							 doi: 10.4143/crt.2016.572 pmid: 28494534  | 
										
| [17] |  
											 Lin X, Liao J, Yang Z, et al. Inhibition of cisplatin-resistant head and neck squamous cell carcinoma by combination of Afatinib with PD0325901, a MEK inhibitor[J]. Am J Cancer Res, 2019,9(6):1282-1292. 
																							 pmid: 31285959  | 
										
| [18] |  
											 Ruiu R, Rolih V, Bolli E, et al. Fighting breast cancer stem cells through the immune-targeting of the xCT cystine-glutamate antiporter[J]. Cancer Immunol Immunother, 2019,68(1):131-141. DOI: 10.1007/s00262-018-2185-1. 
																							 doi: 10.1007/s00262-018-2185-1 pmid: 29947961  | 
										
| [19] |  
											 Masaldan S, Clatworthy SAS, Gamell C, et al. Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis[J]. Redox Biol, 2018,14:100-115. DOI: 10.1016/j.redox. 2017.08.015. 
																							 doi: 10.1016/j.redox.2017.08.015 pmid: 28888202  | 
										
| [20] |  
											 Hao S, Yu J, He W, et al. Cysteine dioxygenase 1 mediates erastin-induced ferroptosis in human gastric cancer cells[J]. Neoplasia, 2017,19(12):1022-1032. DOI: 10.1016/j.neo.2017.10.005. 
																							 doi: 10.1016/j.neo.2017.10.005 pmid: 29144989  | 
										
| [21] |  
											 Gai C, Yu M, Li Z, et al. Acetaminophen sensitizing erastin-induced ferroptosis via modulation of Nrf2/heme oxygenase-1 signaling pathway in non-small-cell lung cancer[J]. J Cell Physiol, 2020,235(4):3329-3339. DOI: 10.1002/jcp.29221. 
																							 doi: 10.1002/jcp.29221 pmid: 31541463  | 
										
| [22] |  
											 Timmerman LA, Holton T, Yuneva M, et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target[J]. Cancer Cell, 2013,24(4):450-465. DOI: 10.1016/j.ccr.2013.08.020. 
																							 doi: 10.1016/j.ccr.2013.08.020  | 
										
| [23] |  
											 Geng N, Shi BJ, Li SL, et al. Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells[J]. Eur Rev Med Pharmacol Sci, 2018,22(12):3826-3836. DOI: 10.26355/eurrev_201806_15267. 
																							 doi: 10.26355/eurrev_201806_15267 pmid: 29949159  | 
										
| [24] |  
											 Yu M, Gai C, Li Z, et al. Targeted exosome-encapsulated erastin induced ferroptosis in triple negative breast cancer cells[J]. Cancer Sci, 2019,110(10):3173-3182. DOI: 10.1111/cas.14181. 
																							 doi: 10.1111/cas.14181 pmid: 31464035  | 
										
| [25] |  
											 Yu H, Yang C, Jian L, et al. Sulfasalazine-induced ferroptosis in breast cancer cells is reduced by the inhibitory effect of estrogen receptor on the transferrin receptor[J]. Oncol Rep, 2019,42(2):826-838. DOI: 10.3892/or.2019.7189. 
																							 doi: 10.3892/or.2019.7189 pmid: 31173262  | 
										
| [26] |  
											 Ma S, Henson ES, Chen Y, et al. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells[J]. Cell Death Dis, 2016,7:e2307. DOI: 10.1038/cddis.2016.208. 
																							 doi: 10.1038/cddis.2016.208 pmid: 27441659  | 
										
| [27] |  
											 Ma S, Dielschneider RF, Henson ES, et al. Ferroptosis and autophagy induced cell death occur independently after siramesine and lapatinib treatment in breast cancer cells[J]. PLoS One, 2017,12(8):e0182921. DOI: 10.1371/journal.pone.0182921. 
																							 doi: 10.1371/journal.pone.0182921 pmid: 28827805  | 
										
| [28] |  
											 Nagpal A, Redvers RP, Ling X, et al. Neoadjuvant neratinib promotes ferroptosis and inhibits brain metastasis in a novel syngeneic model of spontaneous HER2+ve breast cancer metastasis[J]. Breast Cancer Res, 2019,21(1):94. DOI: 10.1186/s13058-019-1177-1. 
																							 doi: 10.1186/s13058-019-1177-1 pmid: 31409375  | 
										
| [29] |  
											 Mbaveng AT, Bitchagno GTM, Kuete V, et al. Cytotoxicity of ungeremine towards multi-factorial drug resistant cancer cells and induction of apoptosis, ferroptosis, necroptosis and autophagy[J]. Phytomedicine, 2019,60:152832. DOI: 10.1016/j.phymed.2019.152832. 
																							 doi: 10.1016/j.phymed.2019.152832 pmid: 31031043  | 
										
| [30] |  
											 Shan Z, Wei Z, Shaikh ZA. Suppression of ferroportin expression by cadmium stimulates proliferation, EMT, and migration in triple-negative breast cancer cells[J]. Toxicol Appl Pharmacol, 2018,356:36-43. DOI: 10.1016/j.taap.2018.07.017. 
																							 doi: 10.1016/j.taap.2018.07.017 pmid: 30030096  | 
										
| [31] |  
											 Pizzamiglio S, De Bortoli M, Taverna E, et al. Expression of iron-related proteins differentiate non-cancerous and cancerous breast tumors[J]. Int J Mol Sci, 2017, 18(2). pii: E410. DOI: 10.3390/ijms18020410. 
																							 doi: 10.3390/ijms18020444 pmid: 28230770  | 
										
| [32] |  
											 Park E, Chung SW. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation[J]. Cell Death Dis, 2019,10(11):822. DOI: 10.1038/s41419-019-2064-5. 
																							 doi: 10.1038/s41419-019-2064-5 pmid: 31659150  | 
										
| [33] |  
											 Tang M, Chen Z, Wu D, et al. Ferritinophagy/ferroptosis: iron-related newcomers in human diseases[J]. J Cell Physiol, 2018,233(12):9179-9190. DOI: 10.1002/jcp.26954. 
																							 doi: 10.1002/jcp.26954 pmid: 30076709  | 
										
| [34] |  
											 Gryzik M, Srivastava A, Longhi G, et al. Expression and characterization of the ferritin binding domain of nuclear receptor coactivator-4 (NCOA4)[J]. Biochim Biophys Acta Gen Subj, 2017,1861(11 Pt A):2710-2716. DOI: 10.1016/j.bbagen.2017.07.015. 
																							 doi: 10.1016/j.bbagen.2017.07.015 pmid: 28754384  | 
										
| [35] |  
											 Zhang Z, Yao Z, Wang L, et al. Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells[J]. Autophagy, 2018,14(12):2083-2103. DOI: 10.1080/15548627.2018.503146. 
																							 doi: 10.1080/15548627.2018.1503146 pmid: 30081711  | 
										
| [36] |  
											 Yang WS, Kim KJ, Gaschler MM, et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J]. Proc Natl Acad Sci U S A, 2016,113(34):e4966-e4975. DOI: 10.1073/pnas.1603244113. 
																							 doi: 10.1073/pnas.1603244113 pmid: 27506793  | 
										
| [37] |  
											 Jarc E, Kump A, Malavasic P, et al. Lipid droplets induced by secreted phospholipase A2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2018,1863(3):247-265. DOI: 10.1016/j.bbalip.2017.12.006. 
																							 doi: 10.1016/j.bbalip.2017.12.006 pmid: 29229414  | 
										
| [38] |  
											 Kuwata H, Nakatani E, Shimbara-Matsubayashi S, et al. Long-chain acyl-CoA synthetase 4 participates in the formation of highly unsaturated fatty acid-containing phospholipids in murine macrophages[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2019,1864(11):1606-1618. DOI: 10.1016/j.bbalip.2019.07.013. 
																							 doi: 10.1016/j.bbalip.2019.07.013 pmid: 31376475  | 
										
| [39] |  
											 Jalil A, Bourgeois T, Ménégaut L, et al. Revisiting the role of LXRs in PUFA metabolism and phospholipid homeostasis[J]. Int J Mol Sci, 2019, (15). pii: E3787. DOI: 10.3390/ijms20153787. 
																							 doi: 10.3390/ijms20153824 pmid: 31387280  | 
										
| [40] |  
											 Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017,13(1):91-98. DOI: 10.1038/nchembio.2239. 
																							 doi: 10.1038/nchembio.2239 pmid: 27842070  | 
										
| [41] |  
											 Wu X, Zhi F, Lun W, et al. Baicalin inhibits PDGF-BB-induced hepatic stellate cell proliferation, apoptosis, invasion, migration and activation via the miR-3595/ACSL4 axis[J]. Int J Mol Med, 2018,41(4):1992-2002. DOI: 10.3892/ijmm.2018.3427. 
																							 doi: 10.3892/ijmm.2018.3427 pmid: 29393361  | 
										
| [42] |  
											 Park S, Oh J, Kim M, et al. Bromelain effectively suppresses Kras-mutant colorectal cancer by stimulating ferroptosis[J]. Anim Cells Syst (Seoul), 2018,22(5):334-340. DOI: 10.1080/19768354.2018.1512521. 
																							 doi: 10.1080/19768354.2018.1512521  | 
										
| [43] |  
											 Magtanong L, Ko PJ, To M, et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state[J]. Cell Chem Biol, 2019,26(3):420-432, e9. DOI: 10.1016/j.chembiol.2018.11.016. 
																							 doi: 10.1016/j.chembiol.2018.11.016 pmid: 30686757  | 
										
| [44] |  
											 Xie Y, Zhu S, Song X, et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity[J]. Cell Rep, 2017,20(7):1692-1704. DOI: 10.1016/j.celrep.2017.07.055. 
																							 doi: 10.1016/j.celrep.2017.07.055 pmid: 28813679  | 
										
| [45] |  
											 Kaiser AM, Attardi LD. Deconstructing networks of p53-mediated tumor suppression in vivo[J]. Cell Death Differ, 2018,25(1):93-103. DOI: 10.1038/cdd.2017.171. 
																							 doi: 10.1038/cdd.2017.171 pmid: 29099489  | 
										
| [46] |  
											 Liu DS, Duong CP, Haupt S, et al. Inhibiting the system xC(-)/glutathione axis selectively targets cancers with mutant-p53 accumulation[J]. Nat Commun, 2017,8:14844. DOI: 10.1038/ncomms14844. 
																							 doi: 10.1038/ncomms14844 pmid: 28348409  | 
										
| [47] |  
											 Tarangelo A, Magtanong L, Bieging-Rolett KT, et al. P53 suppresses metabolic stress-induced ferroptosis in cancer cells[J]. Cell Rep, 2018,22(3):569-575. DOI: 10.1016/j.celrep.2017.12.077. 
																							 doi: 10.1016/j.celrep.2017.12.077 pmid: 29346757  | 
										
| [48] |  
											 Aubrey BJ, Kelly GL, Janic A, et al. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression?[J]. Cell Death Differ, 2018,25(1):104-113. DOI: 10.1038/cdd.2017.169. 
																							 doi: 10.1038/cdd.2017.169 pmid: 29149101  | 
										
| [49] |  
											 Mao C, Wang X, Liu Y, et al. A G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53[J]. Cancer Res, 2018,78(13):3484-3496. DOI: 10.1158/0008-5472.CAN-17-3454. 
																							 doi: 10.1158/0008-5472.CAN-17-3454 pmid: 29588351  | 
										
| [50] |  
											 Kawano Y, Iwama E, Tsuchihashi K, et al. CD44 variant-dependent regulation of redox balance in EGFR mutation-positive non-small cell lung cancer: a target for treatment[J]. Lung Cancer, 2017,113:72-78. DOI: 10.1016/j.lungcan.2017.09.008. 
																							 doi: 10.1016/j.lungcan.2017.09.008 pmid: 29110853  | 
										
| [51] |  
											 Xiong H, Wang C, Wang Z, et al. Intracellular cascade activated nanosystem for improving ER+ breast cancer therapy through attacking GSH-mediated metabolic vulnerability[J]. J Control Release, 2019,309:145-157. DOI: 10.1016/j.jconrel.2019.07.029. 
																							 doi: 10.1016/j.jconrel.2019.07.029 pmid: 31348976  | 
										
| [1] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. | 
| [2] | Wang Peixin, Zhao Jun, Xu Shihong, Jiang Zhaoyang, Wang Xiaoqiang, Yang Hongjuan. Progress of ferroptosis-related mechanisms in osteosarcoma [J]. Journal of International Oncology, 2024, 51(5): 308-311. | 
| [3] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. | 
| [4] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. | 
| [5] | Wang Zihao, Wang Yu, Yang Xin, He Yi, Mo Xingkui, Yuan Tao. Research progress on the molecular mechanism and related treatments of ferroptosis in osteosarcoma [J]. Journal of International Oncology, 2024, 51(4): 239-244. | 
| [6] | Chen Boguang, Wang Sugui, Zhang Yongjie. Role of serum cholinesterase and inflammatory markers in the prognosis of stage ⅠA -ⅢA breast cancer [J]. Journal of International Oncology, 2024, 51(2): 73-82. | 
| [7] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. | 
| [8] | Wang Jing, Xu Wenting. Value of NLR, CEA combined with coagulation indicators in the differential diagnosis of benign and malignant breast nodules with a diameter ≤ 1.0 cm [J]. Journal of International Oncology, 2023, 50(9): 520-526. | 
| [9] | Feng Chengtian, Huang Furong, Cao Shiyu, Wang Jianyu, Nanding Abiyasi, Jiang Yongdong, Zhu Juanying. Relationships between HER2 protein expression and imaging features in HER2 positive breast cancer patients [J]. Journal of International Oncology, 2023, 50(9): 527-531. | 
| [10] | Feng Dongxu, Wu Wei, Gao Pingfa, Wang Jun, Shi Lijuan, Chen Dawei, Li Wenbing, Zhang Meifeng. Effects of miR-451 on glycolysis and apoptosis of breast cancer cells by regulating Rho/ROCK1 pathway [J]. Journal of International Oncology, 2023, 50(8): 449-456. | 
| [11] | Pan Shulan, Liu Chang, He Ping. Effect of fritinib on angiogenesis, tumor growth and IRE1-ASK1-JNK pathway in triple negative breast cancer [J]. Journal of International Oncology, 2023, 50(8): 457-462. | 
| [12] | Wang Wende, Zeng De. Research progress on the mechanism of endocrine therapy resistance for breast cancer [J]. Journal of International Oncology, 2023, 50(6): 352-356. | 
| [13] | Li Qingshan, Xie Xin, Zhang Nan, Liu Shuai. Research progress on the application of combining radiotherapy and systemic therapy in breast cancer [J]. Journal of International Oncology, 2023, 50(6): 362-367. | 
| [14] | Zhu Jun, Huang Meijin, Li Yuan, Liu Zegang, Xun Xin, Chen Hong. Research progress on targeted therapy of breast cancer with low expression of HER2 [J]. Journal of International Oncology, 2023, 50(4): 236-240. | 
| [15] | Zhou Ting, Xu Shaohua, Mei Lin. Efficacy and safety of bevacizumab combined with capecitabine in the treatment of advanced breast cancer [J]. Journal of International Oncology, 2023, 50(3): 144-149. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||