Journal of International Oncology ›› 2019, Vol. 46 ›› Issue (12): 760-763.doi: 10.3760/cma.j.issn.1673-422X.2019.12.011
• Reviews • Previous Articles Next Articles
Ma Qingyu1, Liang Junqin2
Received:
2019-10-08
Revised:
2019-11-08
Online:
2019-12-08
Published:
2019-12-09
Contact:
Liang Junqin
E-mail:zyeemail@163.com
Supported by:
Ma Qingyu, Liang Junqin. Research progress on the mechanism of β human papillomavirus induced cutaneous squamous cell carcinoma[J]. Journal of International Oncology, 2019, 46(12): 760-763.
[1] | Venuti A, Lohse S, Tommasino M, et al. Cross-talk of cutaneous beta human papillomaviruses and the immune system: determinants of disease penetrance[J]. Philos Trans R Soc Lond B Biol Sci, 2019, 374(1773): 20180287. DOI: 10.1098/rstb.2018.0287. |
[2] | Sichero L, Rollison DE, Amorrortu RP, et al. Beta human papillomavirus and associated diseases[J]. Acta Cytol, 2019, 63(2): 100-108. DOI: 10.1159/000492659. |
[3] | Rollison DE, Viarisio D, Amorrortu RP, et al. An emerging issue in oncogenic virology: the role of beta HPV types in development of cutaneous squamous cell carcinoma[J]. J Virol, 2019, 93(7). pii: e01003-18. DOI: 10.1128/jvi.01003-18. |
[4] | Marx B, Miller-Lazic D, Doorbar J, et al. HPV8-E6 interferes with syntenin-2 expression through deregulation of differentiation, methylation and phosphatidylinositidekinase dependent mechanisms[J]. Front Microbiol, 2017, 8: 1724. DOI: 10.3389/fmicb.2017.01724. |
[5] | Iannacone MR, Gheit T, Pfister H, et al. Case-control study of genus-beta human papillomaviruses in plucked eyebrow hairs and cutaneous squamous cell carcinoma[J]. Int J Cancer, 2014, 134(9): 2231-2244. DOI: 10.1002/ijc.28552. |
[6] | Tommasino M. The biology of beta human papillomaviruses[J]. Virus Res, 2017, 231: 128-138. DOI: 10.1016/j.virusres.2016.11.013. |
[7] | Brancaccio RN, Robitaille A, Dutta S, et al. Generation of a novel next-generation sequencing-based method for the isolation of new human papillomavirus types[J]. Virology, 2018, 520: 1-10. DOI: 10.1016/j.virol.2018.04.017. |
[8] | Chahoud J, Semaan A, Chen Y, et al. Association between β-genus human papillomavirus and cutaneous squamous cell carcinoma in immunocompetent individuals-a meta-analysis[J]. JAMA Dermatol, 2016, 152(12): 1354-1364. DOI: 10.1001/jamadermatol.2015.4530. |
[9] | Waldman A, Schmults C. Cutaneous squamous cell carcinoma[J]. Hematol Oncol Clin North Am, 2019, 33(1): 1-12. DOI: 10.1016/j.hoc.2018.08.001. |
[10] | Hampras SS, Rollison DE, Giuliano AR, et al. Prevalence and concordance of cutaneous beta human papillomavirus infection at mucosal and cutaneous sites[J]. J Infect Dis, 2017, 216(1): 92-96. DOI: 10.1093/infdis/jix245. |
[11] | Genders RE, Osinga JAJ, Tromp EE, et al. Metastasis risk of cutaneous squamous cell carcinoma in organ transplant recipients and immunocompetent patients[J]. Acta Derm Venereol, 2018, 98(6): 551-555. DOI: 10.2340/00015555-2901. |
[12] | Chockalingam R, Downing C, Tyring SK. Cutaneous squamous cell carcinomas in organ transplant recipients[J]. J Clin Med, 2015, 4(6): 1229-1239. DOI: 10.3390/jcm4061229. |
[13] | Bouwes Bavinck JN, Feltkamp MCW, Green AC, et al. Human papillomavirus and posttransplantation cutaneous squamous cell carcinoma: a multicenter, prospective cohort study[J]. Am J Transplant, 2018, 18(5): 1220-1230. DOI: 10.1111/ajt.14537. |
[14] | Iannacone MR, Gheit T, Waterboer T, et al. Case-control study of cutaneous human papillomavirus infection in Basal cell carcinoma of the skin[J]. J Invest Dermatol, 2013, 133(6): 1512-1520. DOI: 10.1038/jid.2012.478. |
[15] | Meyers JM, Grace M, Uberoi A, et al. Inhibition of TGF-β and NOTCH signaling by cutaneous papillomaviruses[J]. Front Microbiol, 2018, 9: 389. DOI: 10.3389/fmicb.2018.00389. |
[16] | Viarisio D, Müller-Decker K, Accardi R, et al. Beta HPV38 oncoproteins act with a hit-and-run mechanism in ultraviolet radiation-induced skin carcinogenesis in mice[J]. PLOS Pathog, 2018, 14(1): e1006783. DOI: 10.1371/journal.ppat.1006783. |
[17] | Gheit T. Mucosal and cutaneous human papillomavirus infections and cancer biology[J]. Front Oncol, 2019, 9: 355. DOI: 10.3389/fonc.2019.00355. |
[18] | Yeo-Teh NSL, Ito Y, Jha S. High-risk human papillomaviral oncogenes E6 and E7 target key cellular pathways to achieve oncogenesis[J]. Int J Mol Sci, 2018, 19(6). pii: E1706. DOI: 10.3390/ijms19061706. |
[19] | Martinez-Zapien D, Ruiz FX, Poirson J, et al. Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53[J]. Nature, 2016, 529(7587): 541-545. DOI: 10.1038/nature16481. |
[20] | Steels A, Vannevel L, Zwaenepoel O, et al. Nb-induced stabilisation of p53 in HPV-infected cells[J]. Sci Rep, 2019, 9(1): 12680. DOI: 10.1038/s41598-019-49061-9. |
[21] | Nyman PE, Buehler D, Lambert PF. Loss of function of canonical notch signaling drives head and neck carcinogenesis[J]. Clin Cancer Res, 2018, 24(24): 6308-6318. DOI: 10.1158/1078-0432.CCR-17-3535. |
[22] | Estêvo D, Costa NR, Gil da Costa RM, et al. Hallmarks of HPV carcinogenesis: the role of E6, E7 and E5 oncoproteins in cellular malignancy[J]. Biochim Biophys Acta Gene Regul Mech, 2019, 1862(2): 153-162. DOI: 10.1016/j.bbagrm.2019.01.001. |
[23] | Szalmás A, Tomai'c V, Basukala O, et al. The PTPN14 tumor suppressor is a degradation target of human papillomavirus E7[J]. J Virol, 2017, 91(7). pii: e00057-17. DOI: 10.1128/JVI.00057-17. |
[24] | Akgül B, Kirschberg M, Storey A, et al. Human papillomavirus type 8 oncoproteins E6 and E7 cooperate in downregulation of the cellular checkpoint kinase-1[J]. Int J Cancer, 2019, 145(3): 797-806. DOI: 10.1002/ijc.32223. |
[25] | Heuser S, Hufbauer M, Steiger J, et al. The fibronectin/α3β1 integrin axis serves as molecular basis for keratinocyte invasion induced by βHPV[J]. Oncogene, 2016, 35(34): 4529-4539. DOI: 10.1038/onc.2015.512. |
[26] | Hufbauer M, Cooke J, van der Horst GT, et al. Human papillomavirus mediated inhibition of DNA damage sensing and repair drives skin carcinogenesis[J]. Mol Cancer, 2015, 14: 183. DOI: 10.1186/s12943-015-0453-7. |
[27] | Tommasino M. HPV and skin carcinogenesis[J]. Papillomavirus Res, 2019, 7: 129-131. DOI: 10.1016/j.pvr.2019.04.003. |
[28] | Pacini L, Ceraolo MG, Venuti A, et al. UV radiation activates toll-like receptor 9 expression in primary human keratinocytes, an event inhibited by human papillomavirus 38 E6 and E7 oncoproteins[J]. J Virol, 2017, 91(19). pii: e01123-17. DOI: 10.1128/JVI.01123-17. |
[29] | Dong W, Arpin C, Accardi R, et al. Loss of p53 or p73 in human papillomavirus type 38 E6 and E7 transgenic mice partially restores the UV-activated cell cycle checkpoints[J]. Oncogene, 2008, 27(20): 2923-2928. DOI: 10.1038/sj.onc.1210944. |
[30] | Pacini L, Savini C, Ghittoni R, et al. Downregulation of toll-like receptor 9 expression by beta human papillomavirus 38 and implications for cell cycle control[J]. J Virol, 2015, 89(22): 11396-11405. DOI: 10.1128/JVI.02151-15. |
[1] | Wang Liwei, Liang Hongsheng, Du Songlin, Chen Zhihao, Wang Qing, Gao Aili. Research progress of avermectins in anti-tumor [J]. Journal of International Oncology, 2022, 49(6): 353-356. |
[2] | Pang Jingdan, Du Yingying, Da Jie. Adverse reactions and treatment measures of advanced solid tumors treated with antibody-drug conjugates [J]. Journal of International Oncology, 2022, 49(4): 220-224. |
[3] | Zeng Yan, Luo Pan, Wang Ziqi, Wu Weili. Mechanism of drug induced ferroptosis in the treatment of head and neck tumors [J]. Journal of International Oncology, 2022, 49(3): 173-176. |
[4] | Yang Chi, Luo Changjiang. Research progress on the background of inflammation, immunity and cholesterol metabolism in colorectal cancer [J]. Journal of International Oncology, 2022, 49(10): 630-634. |
[5] | Guo Shihao, Ren Yeqing, Guo Geng. Molecular mechanism of vasculogenic mimicry in brain glioma [J]. Journal of International Oncology, 2021, 48(6): 362-365. |
[6] | Wei Yongjian, Hu Jinjing, Li Xun. Relationship between CDCA8 and tumor progression as well as that between CDCA8 and stemness maintenance of stem cells [J]. Journal of International Oncology, 2021, 48(4): 216-219. |
[7] | Yan Bingfang, Meng Wei, Bai Xuelian. Progress of Legumain in malignant tumors [J]. Journal of International Oncology, 2020, 47(9): 546-549. |
[8] | Su Hao, Liu Wenjie, Bao Mandula, Luo Shou, Wang Xuewei, Zhao Chuanduo, Liu Qian, Wang Xishan, Zhou Zhixiang, Zhou Haitao. Molecular mechanisms of cetuximab resistance in metastatic colorectal cancer [J]. Journal of International Oncology, 2020, 47(5): 308-311. |
[9] | Chai Yue, Dong Mei. Prognostic role and mechanisms of abnormal coagulation system in lymphoma [J]. Journal of International Oncology, 2020, 47(10): 637-640. |
[10] | Zhou Huiping, Li Yuhua, Wang Yuhui, Su Yilong, Yang Yingying, Xu Xiaotian, Duan Xiaoqun. Preventive and therapeutic effects of common plant drugs on colon cancer and its mechanism [J]. Journal of International Oncology, 2020, 47(1): 51-55. |
[11] |
Deng Siyuan, He De.
Expression of miR-490 in malignant tumors and its molecular mechanism [J]. Journal of International Oncology, 2019, 46(10): 601-604. |
[12] |
Yang Xilin, Chen Xiaopin.
MYC inhibition associated mechanism research of Group3 medulloblastoma [J]. Journal of International Oncology, 2019, 46(10): 613-616. |
[13] | Zhou Shuaiyang, Gong Weijuan, Xiao Weiming. Mechanism of angiopoietinlike protein 4 in digestive system neoplasms [J]. Journal of International Oncology, 2018, 45(6): 371-374. |
[14] | Liang Biyu, He Weiming, He Xiaoyi, Ding Yuanlin, Yu Haibing. Diabetes, hypoglycemic drugs and pancreatic cancer [J]. Journal of International Oncology, 2018, 45(3): 183-186. |
[15] | QIU Mei-Qing, WANG Tao, TONG Zhong-Sheng, JIA Yong-Sheng. Effects and mechanism of overexpression of Mfn2 gene on photodynamic therapy sensitivity of T47D cells in human breast cancer [J]. Journal of International Oncology, 2017, 44(8): 641-646. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||