
Journal of International Oncology ›› 2026, Vol. 53 ›› Issue (3): 167-173.doi: 10.3760/cma.j.cn371439-20250613-00027
• Review • Previous Articles Next Articles
Qing Shuman, Wang Yuanyuan, Yu Shuyang, Li Yingge, Yao Yi(
)
Received:2025-06-13
Online:2026-03-08
Published:2026-02-09
Contact:
Yao Yi
E-mail:yaoyi2018@whu.edu.cn
Supported by:Qing Shuman, Wang Yuanyuan, Yu Shuyang, Li Yingge, Yao Yi. Classification,distribution and relationship with tumors of CAF[J]. Journal of International Oncology, 2026, 53(3): 167-173.
"
| CAF亚型 | 缩写 | 特征基因 | CAIX表达 | 标志蛋白 | 参与的生物学功能 | 空间分布 |
|---|---|---|---|---|---|---|
| 肌成纤维细胞样 CAF[ | myCAF | FAP、TPMI1、THBS2、 HAS2 | 阴性 | α-SMA、POSTIN、 LRRC15、ITGA11、 SPARC | 肿瘤细胞增殖、迁移、 ECM重塑 | 癌巢附近 |
| 基质重塑型 CAF[ | mCAF | MMP-11、CDH11、POSTN、 COL5A1、COL6A3、LUM、 DCN、FBLN、LOX、VCA | 阴性 | MMP-11、纤维蛋白-1、 Collagens、POSTIN、 LUM、DCN、FAP | 基质沉积、ECM重塑、 血管生成、免疫调节 | 肿瘤富基质边缘,临近血管、间质中表达 |
| 胞外基质型 CAF[ | eCAF | MMP-14、LOXL2、POX2、 POL4 | 阴性 | POSTIN | 免疫细胞极化、 ECM重塑 | 肿瘤远心部位的间质 |
| 炎症型 CAF[ | iCAF | CD34、CD248、C3/CFD、 CXCL12、CXCL14、IL-6、 PLA2G2A | 阴性 | CD26、IL-6、CXCL12、 LIF、APOD、PDGFR-α | 免疫细胞浸润、 化疗耐药 | 因癌种而异,非小细胞肺癌中多位于富癌区和氧分压正常区,胰腺癌中位于远离肿瘤细胞的结缔组织增生区 |
| 抗原呈递型 CAF[ | apCAF | CD74、HLA-DRA、ACTA2、 CCL5 | 阴性 | MHC-Ⅱ、CDH11、 PDPN、CD74 | 肿瘤抗原呈递、 免疫调节 | 间皮样apCAF临近肿瘤细胞,纤维细胞样apCAF多在淋巴细胞富集区 |
| 瘤样CAF[ | tCAF | PDPN、MME、ENO1 | 阳性 | CD10、CD73、CAIX | 肿瘤生长、血管生成 | 临近肿瘤-基质界面、缺氧区,与肿瘤细胞接触 |
| 缺氧 tCAF[ | - | - | 阳性 | CD10 | 肿瘤耐药 | 缺氧区或富癌区 |
| 血管相关型 CAF[ | vCAF | CD134、MACM(CD146)、 ACTA2、MEF2C、MUSTN1、 RGS5、NOTCH3 | 阴性 | 结蛋白、巢蛋白-2、 VEGF | 血管生成 | 富癌区,临近血管 |
| 循环型CAF[ | cCAF | - | Ki-67 | vCAF聚集区域 | ||
| 代谢型CAF[ | meCAF | PLA2G2A、KLF16、 CRABP2 | - | PLA2G2A | 糖酵解 | 基质区域,靠近mCAF |
| 脂质加工型 CAF[ | lpCAF | - | - | 载脂蛋白A1、 载脂蛋白C1 | 脂质加工 | 瘤外分布 |
| 脂质加工基质型 CAF[ | lpmCAF (CD36+ CAF) | COL6A3、COL1A1、CD36、 STEAP4 | - | CD36 | ECM、胆固醇和 脂肪酸代谢 | 瘤内分布 |
| 干扰素响应型 CAF[ | ifnCAF | IL-32、CXCL9、CXCL 10、 CXCL11、IDO1 | 阴性 | IDO | 慢性炎症 | 肿瘤-基质界面 |
| SMA型CAF[ | SMA-CAF | - | 阴性 | SMA、PDGFR-b、 CD146、FAP(-)、 MMP(-)、Collagen(-) | 免疫细胞浸润 | 基质区 |
| 发育型 CAF[ | dCAF | SCRG1、MKI67、TUBA1B、 SOX9、SOX10 | 阴性 | SCRG1、Ki-67 | 细胞分裂 | 肿瘤-基质界面 |
| [1] |
Tsoumakidou M. The advent of immune stimulating CAFs in cancer[J]. Nat Rev Cancer, 2023, 23(4): 258-269. DOI: 10.1038/s41568-023-00549-7.
pmid: 36807417 |
| [2] | Kanzaki R, Pietras K. Heterogeneity of cancer-associated fibroblasts: opportunities for precision medicine[J]. Cancer Sci, 2020, 111(8): 2708-2717. DOI: 10.1111/cas.14537. |
| [3] |
Mao X, Xu J, Wang W, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives[J]. Mol Cancer, 2021, 20(1): 131. DOI: 10.1186/s12943-021-01428-1.
pmid: 34635121 |
| [4] |
Cords L, Tietscher S, Anzeneder T, et al. Cancer-associated fibroblast classification in single-cell and spatial proteomics data[J]. Nat Commun, 2023, 14(1): 4294. DOI: 10.1038/s41467-023-39762-1.
pmid: 37463917 |
| [5] |
Coursier D, Calvo F. CAFs vs. TECs: when blood feuds fuel cancer progression, dissemination and therapeutic resistance[J]. Cell Oncol (Dordr), 2024, 47(4): 1091-1112. DOI: 10.1007/s13402-024-00931-z.
pmid: 38453816 |
| [6] |
Tian TV, Affò S. Stromal barriers to the abscopal effect[J]. Cancer Cell, 2025, 43(5): 810-812. DOI: 10.1016/j.ccell.2025.04.008.
pmid: 40359907 |
| [7] | 王文浩, 孙希瑞, 刘锦, 等. 肿瘤相关成纤维细胞在乳腺癌发生与发展中的作用[J]. 国际肿瘤学杂志, 2022, 49(10): 615-618. DOI: 10.3760/cma.j.cn371439-20220614-00122. |
| [8] | Li L, Wei JR, Dong J, et al. Laminin γ2-mediating T cell exclusion attenuates response to anti-PD-1 therapy[J]. Sci Adv, 2021, 7(6): eabc8346. DOI: 10.1126/sciadv.abc8346. |
| [9] |
Li C, Teixeira AF, Zhu HJ, et al. Cancer associated-fibroblast-derived exosomes in cancer progression[J]. Mol Cancer, 2021, 20(1): 154. DOI: 10.1186/s12943-021-01463-y.
pmid: 34852849 |
| [10] |
Lin Z, Li G, Jiang K, et al. Cancer therapy resistance mediated by cancer-associated fibroblast-derived extracellular vesicles: biological mechanisms to clinical significance and implications[J]. Mol Cancer, 2024, 23(1): 191. DOI: 10.1186/s12943-024-02106-8.
pmid: 39244548 |
| [11] | Cords L, Engler S, Haberecker M, et al. Cancer-associated fibroblast phenotypes are associated with patient outcome in non-small cell lung cancer[J]. Cancer Cell, 2024, 42(3): 396-412.e5. DOI: 10.1016/j.ccell.2023.12.021. |
| [12] | Miyai Y, Esaki N, Takahashi M, et al. Cancer-associated fibroblasts that restrain cancer progression: hypotheses and perspectives[J]. Cancer Sci, 2020, 111(4): 1047-1057. DOI: 10.1111/cas.14346. |
| [13] |
Chen Y, McAndrews KM, Kalluri R. Clinical and therapeutic relevance of cancer-associated fibroblasts[J]. Nat Rev Clin Oncol, 2021, 18(12): 792-804. DOI: 10.1038/s41571-021-00546-5.
pmid: 34489603 |
| [14] |
Mucciolo G, Araos Henríquez J, Jihad M, et al. EGFR-activated myofibroblasts promote metastasis of pancreatic cancer[J]. Cancer Cell, 2024, 42(1): 101-118.e11. DOI: 10.1016/j.ccell.2023.12.002.
pmid: 38157863 |
| [15] | Mori Y, Okimoto Y, Sakai H, et al. Targeting PDGF signaling of cancer-associated fibroblasts blocks feedback activation of HIF-1α and tumor progression of clear cell ovarian cancer[J]. Cell Rep Med, 2024, 5(5): 101532. DOI: 10.1016/j.xcrm.2024.101532. |
| [16] |
Foster DS, Januszyk M, Delitto D, et al. Multiomic analysis reveals conservation of cancer-associated fibroblast phenotypes across species and tissue of origin[J]. Cancer Cell, 2022, 40(11): 1392-1406.e7. DOI: 10.1016/j.ccell.2022.09.015.
pmid: 36270275 |
| [17] | Öhlund D, Handly-Santana A, Biffi G, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer[J]. J Exp Med, 2017, 214(3): 579-596. DOI: 10.1084/jem.20162024. |
| [18] |
Schwörer S, Cimino FV, Ros M, et al. Hypoxia potentiates the inflammatory fibroblast phenotype promoted by pancreatic cancer cell-derived cytokines[J]. Cancer Res, 2023, 83(10): 1596-1610. DOI: 10.1158/0008-5472.Can-22-2316.
pmid: 36912618 |
| [19] |
Ma C, Yang C, Peng A, et al. Pan-cancer spatially resolved single-cell analysis reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment[J]. Mol Cancer, 2023, 22(1): 170. DOI: 10.1186/s12943-023-01876-x.
pmid: 37833788 |
| [20] |
Bartoschek M, Oskolkov N, Bocci M, et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing[J]. Nat Commun, 2018, 9(1): 5150. DOI: 10.1038/s41467-018-07582-3.
pmid: 30514914 |
| [21] | Liu C, Zhang M, Yan X, et al. Single-cell dissection of cellular and molecular features underlying human cervical squamous cell carcinoma initiation and progression[J]. Sci Adv, 2023, 9(4): eadd8977. DOI: 10.1126/sciadv.add8977. |
| [22] |
Li X, Sun Z, Peng G, et al. Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor clinical outcomes in patients with gastric cancer[J]. Theranostics, 2022, 12(2): 620-638. DOI: 10.7150/thno.60540.
pmid: 34976204 |
| [23] |
Zhang H, Yue X, Chen Z, et al. Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: new opportunities in cancer immunotherapy and advances in clinical trials[J]. Mol Cancer, 2023, 22(1): 159. DOI: 10.1186/s12943-023-01860-5.
pmid: 37784082 |
| [24] | Zhu GQ, Tang Z, Huang R, et al. CD36+ cancer-associated fibroblasts provide immunosuppressive microenvironment for hepatocellular carcinoma via secretion of macrophage migration inhibitory factor[J]. Cell Discov, 2023, 9(1): 25. DOI: 10.1038/s41421-023-00529-z. |
| [25] |
Dominguez CX, Müller S, Keerthivasan S, et al. Single-cell RNA sequencing reveals stromal evolution into LRRC15+ myofibroblasts as a determinant of patient response to cancer immunotherapy[J]. Cancer Discov, 2020, 10(2): 232-253. DOI: 10.1158/2159-8290.Cd-19-0644.
pmid: 31699795 |
| [26] | Song J, Wei R, Liu C, et al. Antigen-presenting cancer associated fibroblasts enhance antitumor immunity and predict immunotherapy response[J]. Nat Commun, 2025, 16(1): 2175. DOI: 10.1038/s41467-025-57465-7. |
| [27] | Chen X, Zhou Z, Xie L, et al. Single-cell resolution spatial analysis of antigen-presenting cancer-associated fibroblast niches[J]. Cancer Cell, 2025, 43(12): 2224-2240.e9. DOI: 10.1016/j.ccell.2025.09.001. |
| [28] |
Wang Y, Liang Y, Xu H, et al. Single-cell analysis of pancreatic ductal adenocarcinoma identifies a novel fibroblast subtype associated with poor prognosis but better immunotherapy response[J]. Cell Discov, 2021, 7(1): 36. DOI: 10.1038/s41421-021-00271-4.
pmid: 34035226 |
| [29] | Sebastian A, Hum NR, Martin KA, et al. Single-cell transcriptomic analysis of tumor-derived fibroblasts and normal tissue-resident fibroblasts reveals fibroblast heterogeneity in breast cancer[J]. Cancers (Basel), 2020, 12(5): 1307. DOI: 10.3390/cancers12051307. |
| [30] | Ou Z, Lin S, Qiu J, et al. Single-nucleus RNA sequencing and spatial transcriptomics reveal the immunological microenvironment of cervical squamous cell carcinoma[J]. Adv Sci (Weinh), 2022, 9(29): e35986392. DOI: 10.1002/advs.202203040. |
| [31] |
Grauel AL, Nguyen B, Ruddy D, et al. TGFβ-blockade uncovers stromal plasticity in tumors by revealing the existence of a subset of interferon-licensed fibroblasts[J]. Nat Commun, 2020, 11(1): 6315. DOI: 10.1038/s41467-020-19920-5.
pmid: 33298926 |
| [32] | Davidson G, Helleux A, Vano YA, et al. Mesenchymal-like tumor cells and myofibroblastic cancer-associated fibroblasts are associated with progression and immunotherapy response of clear cell renal cell carcinoma[J]. Cancer Res, 2023, 83(17): 2952-2969. DOI: 10.1158/0008-5472.Can-22-3034. |
| [33] |
Affo S, Nair A, Brundu F, et al. Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations[J]. Cancer Cell, 2021, 39(6): 866-882.e11. DOI: 10.1016/j.ccell.2021.03.012.
pmid: 33930309 |
| [34] |
Mellone M, Piotrowska K, Venturi G, et al. ATM regulates differentiation of myofibroblastic cancer-associated fibroblasts and can be targeted to overcome immunotherapy resistance[J]. Cancer Res, 2022, 82(24): 4571-4585. DOI: 10.1158/0008-5472.Can-22-0435.
pmid: 36353752 |
| [35] | Piffkó A, Yang K, Panda A, et al. Radiation-induced amphiregulin drives tumour metastasis[J]. Nature, 2025, 643(8072): 810-819. DOI: 10.1038/s41586-025-08994-0. |
| [36] | Zhou J, Xu Y, Li Y, et al. Cancer-associated fibroblasts derived amphiregulin promotes HNSCC progression and drug resistance of EGFR inhibitor[J]. Cancer Lett, 2025, 622: 217710. DOI: 10.1016/j.canlet.2025.217710. |
| [37] |
Kieffer Y, Hocine HR, Gentric G, et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer[J]. Cancer Discov, 2020, 10(9): 1330-1351. DOI: 10.1158/2159-8290.Cd-19-1384.
pmid: 32434947 |
| [38] | Fang H, Dai W, Gu R, et al. myCAF-derived exosomal PWAR6 accelerates CRC liver metastasis via altering glutamine availability and NK cell function in the tumor microenvironment[J]. J Hematol Oncol, 2024, 17(1): 126. DOI: 10.1186/s13045-024-01643-5. |
| [39] |
Costa A, Kieffer Y, Scholer-Dahirel A, et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer[J]. Cancer Cell, 2018, 33(3): 463-479.e10. DOI: 10.1016/j.ccell.2018.01.011.
pmid: 29455927 |
| [40] |
Cogliati B, Yashaswini CN, Wang S, et al. Friend or foe? The elusive role of hepatic stellate cells in liver cancer[J]. Nat Rev Gastroenterol Hepatol, 2023, 20(10): 647-661. DOI: 10.1038/s41575-023-00821-z.
pmid: 37550577 |
| [41] | Huang H, Wang Z, Zhang Y, et al. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer[J]. Cancer Cell, 2022, 40(6): 656-673.e7. DOI: 10.1016/j.ccell.2022.04.011. |
| [42] | Kerdidani D, Aerakis E, Verrou KM, et al. Lung tumor MHCII immunity depends on in situ antigen presentation by fibroblasts[J]. J Exp Med, 2022, 219(2): e20210815. DOI: 10.1084/jem.20210815. |
| [43] | Yamamoto Y, Kasashima H, Fukui Y, et al. The heterogeneity of cancer-associated fibroblast subpopulations: their origins, biomarkers, and roles in the tumor microenvironment[J]. Cancer Sci, 2023, 114(1): 16-24. DOI: 10.1111/cas.15609. |
| [44] |
Cheng PS, Zaccaria M, Biffi G. Functional heterogeneity of fibroblasts in primary tumors and metastases[J]. Trends Cancer, 2025, 11(2): 135-153. DOI: 10.1016/j.trecan.2024.11.005.
pmid: 39674792 |
| [45] |
Jenkins BH, Tracy I, Rodrigues MFSD, et al. Single cell and spatial analysis of immune-hot and immune-cold tumours identifies fibroblast subtypes associated with distinct immunological niches and positive immunotherapy response[J]. Mol Cancer, 2025, 24(1): 3. DOI: 10.1186/s12943-024-02191-9.
pmid: 39757146 |
| [46] |
Liu L, Ba Y, Yang S, et al. FOS-driven inflammatory CAFs promote colorectal cancer liver metastasis via the SFRP1-FGFR2-HIF1 axis[J]. Theranostics, 2025, 15(10): 4593-4613. DOI: 10.7150/thno.111625.
pmid: 40225580 |
| [47] | Yu X, Qian J, Ding L, et al. Galectin-1: a traditionally immunosuppressive protein displays context-dependent capacities[J]. Int J Mol Sci, 2023, 24(7): 37047471. DOI: 10.3390/ijms24076501. |
| [48] | Chen J, Guo W, Du P, et al. MIF inhibition alleviates vitiligo progression by suppressing CD8+ T cell activation and proliferation[J]. J Pathol, 2023, 260(1): 84-96. DOI: 10.1002/path.6073. |
| [49] | Xiang X, Niu YR, Wang ZH, et al. Cancer-associated fibroblasts: vital suppressors of the immune response in the tumor microenvironment[J]. Cytokine Growth Factor Rev, 2022, 67: 35-48. DOI: 10.1016/j.cytogfr.2022.07.006. |
| [50] | Kerneur C, Cano CE, Olive D. Major pathways involved in macrophage polarization in cancer[J]. Front Immunol, 2022, 13: 1026954. DOI: 10.3389/fimmu.2022.1026954. |
| [51] |
Arpinati L, Scherz-Shouval R. From gatekeepers to providers: regulation of immune functions by cancer-associated fibroblasts[J]. Trends Cancer, 2023, 9(5): 421-443. DOI: 10.1016/j.trecan.2023.01.007.
pmid: 36870916 |
| [52] |
Nicolas AM, Pesic M, Engel E, et al. Inflammatory fibroblasts mediate resistance to neoadjuvant therapy in rectal cancer[J]. Cancer Cell, 2022, 40(2): 168-184.e13. DOI: 10.1016/j.ccell.2022.01.004.
pmid: 35120600 |
| [53] |
Li Z, Sun C, Qin Z. Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming[J]. Theranostics, 2021, 11(17): 8322-8336. DOI: 10.7150/thno.62378.
pmid: 34373744 |
| [54] |
McAndrews KM, Chen Y, Darpolor JK, et al. Identification of functional heterogeneity of carcinoma-associated fibroblasts with distinct IL6-mediated therapy resistance in pancreatic cancer[J]. Cancer Discov, 2022, 12(6): 1580-1597. DOI: 10.1158/2159-8290.Cd-20-1484.
pmid: 35348629 |
| [55] | Kennel KB, Bozlar M, De Valk AF, et al. Cancer-associated fibroblasts in inflammation and antitumor immunity[J]. Clin Cancer Res, 2023, 29(6): 1009-1016. DOI: 10.1158/1078-0432.Ccr-22-1031. |
| [56] | Zhang Y, Ling L, Murad R, et al. Macropinocytosis maintains CAF subtype identity under metabolic stress in pancreatic cancer[J]. Cancer Cell, 2025, 43(9): 1677-1696.e15. DOI: 10.1016/j.ccell.2025.06.021. |
| [1] | Li Jun, Xue Sheng, Wang Weijie, Tao Run, Zhang Jiajun. Expression of TPX2 in kidney renal clear cell carcinoma and its clinical significance [J]. Journal of International Oncology, 2023, 50(4): 214-219. |
| [2] | Xu Meng, Jiang Wei, Zhu Haitao, Cao Xiongfeng. Research progress of cancer-associated fibroblasts in tumor radiotherapy resistance [J]. Journal of International Oncology, 2023, 50(4): 227-230. |
| [3] | Zhang Zishu, Wu Xinlin. Mechanism of action of lactic acid in tumor microenvironment and related treatment [J]. Journal of International Oncology, 2022, 49(6): 349-352. |
| [4] | Wang Wenhao, Sun Xirui, Liu Jin, Sun Xiumei. Role of cancer-associated fibroblasts in the development and progression of breast cancer [J]. Journal of International Oncology, 2022, 49(10): 615-618. |
| [5] | Ou Huiyi, Wang Yue, Peng Chenghong. Correlation between PD-L1 and Tregs in tumor immunity and immunotherapy [J]. Journal of International Oncology, 2021, 48(6): 350-353. |
| [6] | Shen Jiaxing, Zhang Shan, Chen Xiangjing, Wang Li, Sun Xiaoyan, Lyu Yanmin, Song Guanhua, Yao Chengfang. TGF-β induces high expression of IL-17D in lung cancer-associated fibroblast and promotes recruitment of MDSC [J]. Journal of International Oncology, 2021, 48(5): 275-281. |
| [7] | Yan Zhiying, Mao Yifeng, Zhu Yingwei, Xu Kequn. Role of heterogeneity of cancer-associated fibroblasts in targeted therapy of pancreatic cancer [J]. Journal of International Oncology, 2021, 48(5): 308-312. |
| [8] | Wang Ailing, Niu Ximei, Huang Guofu, Leng Xiaoling. Role of cancer-associated fibroblasts in breast cancer [J]. Journal of International Oncology, 2021, 48(10): 614-617. |
| [9] | Liao Chengcheng, An Jiaxing, Tan Zhangxue, Wang Qian, Liu Jianguo. Role of FAM3 gene family in tumor [J]. Journal of International Oncology, 2020, 47(10): 611-614. |
| [10] | Zhang Zhiping, Qi Xiaofei. Fructose metabolism and tumors [J]. Journal of International Oncology, 2019, 46(9): 536-539. |
| [11] | Hu Gengwei1, Zhang Ying2, Wu Zhihao3. Mechanism study and immunotherapy of immune checkpoint PD-1/PD-L1 [J]. Journal of International Oncology, 2019, 46(2): 87-90. |
| [12] | Yang Qianlu, Huang Yunchao. Effect of tumor metabolism on tumor immunity [J]. Journal of International Oncology, 2019, 46(2): 91-93. |
| [13] | Li Zhengmin, Zhang Yuming, Zhang Zhen, Zhang Ru, Zhu Jing, Wang Jun. Mitochondrial energy metabolism mediated via HIF-1 involves the proliferation and apoptosis of renal clear cell carcinoma cells regulated by propofol [J]. Journal of International Oncology, 2019, 46(12): 711-717. |
| [14] | Dong Haiyan, Pang Xiaoyan, Dou Lei, Li Fengxin, Tian Dongli, Zhang Yi. Role of tumor-derived exosomes in tumor metastasis [J]. Journal of International Oncology, 2018, 45(7): 427-431. |
| [15] | Deng Leihong, Peng Lifen, Zeng Tao, Chao Haichao. Research progress of acetylCoA carboxylase in cancer metabolism [J]. Journal of International Oncology, 2018, 45(4): 234-237. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||