Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (8): 490-493.doi: 10.3760/cma.j.cn371439-20220429-00094
• Reviews • Previous Articles Next Articles
Huang Mengpan1, Wang Xuehong2, Lu Yongfu2()
Received:
2022-04-29
Revised:
2022-06-03
Online:
2022-08-08
Published:
2022-09-21
Contact:
Lu Yongfu
E-mail:gyxb123@163.com
Supported by:
Huang Mengpan, Wang Xuehong, Lu Yongfu. Mechanism of FOXA2 in colorectal cancer and its application in diagnosis and treatment[J]. Journal of International Oncology, 2022, 49(8): 490-493.
[1] |
Li C, Liu T, Liu Y, et al. Prognostic value of tumour microen-vironment-related genes by TCGA database in rectal cancer[J]. J Cell Mol Med, 2021, 25(12): 5811-5822. DOI: 10.1111/jcmm.16547.
doi: 10.1111/jcmm.16547 |
[2] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
doi: 10.3322/caac.21660 |
[3] |
Zhang N, Ng AS, Cai S, et al. Novel therapeutic strategies: targe-ting epithelial-mesenchymal transition in colorectal cancer[J]. Lancet Oncol, 2021, 22(8): e358-e368. DOI: 10.1016/S1470-2045(21)00343-0.
doi: 10.1016/S1470-2045(21)00343-0 pmid: 34339656 |
[4] |
Erfani M, Zamani M, Hosseini SY, et al. ARID1A regulates E-cadherin expression in colorectal cancer cells: a promising candidate therapeutic target[J]. Mol Biol Rep, 2021, 48(10): 6749-6756. DOI: 10.1007/s11033-021-06671-9.
doi: 10.1007/s11033-021-06671-9 |
[5] |
Bow YD, Wang YY, Chen YK, et al. Silencing of FOXA2 decreases E-cadherin expression and is associated with lymph node metastasis in oral cancer[J]. Oral Dis, 2020, 26(4): 756-765. DOI: 10.1111/odi.13282.
doi: 10.1111/odi.13282 |
[6] |
Wang B, Liu G, Ding L, et al. FOXA2 promotes the proliferation, migration and invasion, and epithelial mesenchymal transition in colon cancer[J]. Exp Ther Med, 2018, 16(1): 133-140. DOI: 10.3892/etm.2018.6157.
doi: 10.3892/etm.2018.6157 |
[7] |
Huang Y, Shen XJ, Zou Q, et al. Biological functions of micro-RNAs: a review[J]. J Physiol Biochem, 2011, 67(1): 129-139. DOI: 10.1007/s13105-010-0050-6.
doi: 10.1007/s13105-010-0050-6 pmid: 20981514 |
[8] |
Iorio MV, Croce CM. MicroRNA involvement in human cancer[J]. Carcinogenesis, 2012, 33(6): 1126-1133. DOI: 10.1093/carcin/bgs140.
doi: 10.1093/carcin/bgs140 |
[9] |
Sun C, Li S, Yang C, et al. MicroRNA-187-3p mitigates non-small cell lung cancer (NSCLC) development through down-regulation of BCL6[J]. Biochem Biophys Res Commun, 2016, 471(1): 82-88. DOI: 10.1016/j.bbrc.2016.01.175.
doi: 10.1016/j.bbrc.2016.01.175 |
[10] |
Casanova-Salas I, Masiá E, Armiñán A, et al. MiR-187 targets the androgen-regulated gene ALDH1A3 in prostate cancer[J]. PLoS One, 2015, 10(5): e0125576. DOI: 10.1371/journal.pone.0125576.
doi: 10.1371/journal.pone.0125576 |
[11] |
Mulrane L, Madden SF, Brennan DJ, et al. MiR-187 is an independent prognostic factor in breast cancer and confers increased invasive potential in vitro[J]. Clin Cancer Res, 2012, 18(24): 6702-6713. DOI: 10.1158/1078-0432.CCR-12-1420.
doi: 10.1158/1078-0432.CCR-12-1420 |
[12] |
Zhang F, Luo Y, Shao Z, et al. MicroRNA-187, a downstream effector of TGFβ pathway, suppresses Smad-mediated epithelial-mesenchymal transition in colorectal cancer[J]. Cancer Lett, 2016, 373(2): 203-213. DOI: 10.1016/j.canlet.2016.01.037.
doi: 10.1016/j.canlet.2016.01.037 |
[13] |
Li C, Lu S, Shi Y. MicroRNA-187 promotes growth and metastasis of gastric cancer by inhibiting FOXA2[J]. Oncol Rep, 2017, 37(3): 1747-1755. DOI: 10.3892/or.2017.5370.
doi: 10.3892/or.2017.5370 |
[14] |
Wang J, Li B, Zhao K, et al. 2-Amino-4-(1-piperidine) pyridine exhibits inhibitory effect on colon cancer through suppression of FOXA2 expression[J]. 3 Biotech, 2019, 9(11): 384. DOI: 10.1007/s13205-019-1915-1.
doi: 10.1007/s13205-019-1915-1 |
[15] |
Lee H, Jeong AJ, Ye SK. Highlighted STAT3 as a potential drug target for cancer therapy[J]. BMB Rep, 2019, 52(7): 415-423. DOI: 10.5483/BMBRep.2019.52.7.152.
doi: 10.5483/BMBRep.2019.52.7.152 |
[16] |
Zou S, Tong Q, Liu B, et al. Targeting STAT3 in cancer immunotherapy[J]. Mol Cancer, 2020, 19(1): 145. DOI: 10.1186/s12943-020-01258-7.
doi: 10.1186/s12943-020-01258-7 |
[17] |
Wang J, Lu H, Wang W, et al. Hepatocyte nuclear factor 3β plays a suppressive role in colorectal cancer progression[J]. Front Oncol, 2019, 9: 1096. DOI: 10.3389/fonc.2019.01096.
doi: 10.3389/fonc.2019.01096 |
[18] |
Chen R, Wang L, Zhao Q, et al. Platelet-to-lymphocyte ratio and C-reactive protein as markers for colorectal polyp histological type[J]. BMC Cancer, 2021, 21(1): 556. DOI: 10.1186/s12885-021-08221-9.
doi: 10.1186/s12885-021-08221-9 pmid: 34001040 |
[19] |
Boregowda U, Desai M, Nutalapati V, et al. Impact of feedback on adenoma detection rate: a systematic review and meta-analysis[J]. Ann Gastroenterol, 2021, 34(2): 214-223. DOI: 10.20524/aog.2021.0591.
doi: 10.20524/aog.2021.0591 |
[20] |
朱晓佳, 杨力. 结肠镜腺瘤检出率的近期研究进展[J]. 世界华人消化杂志, 2021, 29(22): 1304-1310. DOI: 10.11569/wcjd.v28.i22.1304.
doi: 10.11569/wcjd.v28.i22.1304 |
[21] |
鞠乐乐, 颜玉, 陈曦, 等. 内镜下结直肠息肉临床特点及病理分析[J]. 黑龙江医药科学, 2019, 42(6): 14-15. DOI: 10.3969/j.issn.1008-0104.2019.06.005.
doi: 10.3969/j.issn.1008-0104.2019.06.005 |
[22] |
彭好, 沈磊. Foxa2在结直肠息肉和结直肠癌中的表达及其意义[J]. 胃肠病学, 2019, 24(11): 655-659. DOI: 10.3969/j.issn.1008-7125.2019.11.004.
doi: 10.3969/j.issn.1008-7125.2019.11.004 |
[23] |
Lehner F, Kulik U, Klempnauer J, et al. The hepatocyte nuclear factor 6 (HNF6) and FOXA2 are key regulators in colorectal liver metastases[J]. FASEB J, 2007, 21(7): 1445-1462. DOI: 10.1096/fj.06-6575com.
doi: 10.1096/fj.06-6575com pmid: 17283222 |
[24] |
Zhan X, Zhao A. Transcription factor FOXA3 promotes the deve-lopment of hepatoblastoma via regulating HNF1A, AFP, and ZFHX3 expression[J]. J Clin Lab Anal, 2021, 35(3): e23686. DOI: 10.1002/jcla.23686.
doi: 10.1002/jcla.23686 |
[25] |
Teng S, Li YE, Yang M, et al. Tissue-specific transcription reprogramming promotes liver metastasis of colorectal cancer[J]. Cell Res, 2020, 30(1): 34-49. DOI: 10.1038/s41422-019-0259-z.
doi: 10.1038/s41422-019-0259-z |
[1] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[2] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[3] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[4] | Sun Guobao, Yang Qian, Zhuang Qingchun, Gao Binbin, Sun Xiaogang, Song Wei, Sha Dan. Research progress on the histopathological growth patterns of colorectal liver metastasis [J]. Journal of International Oncology, 2024, 51(2): 114-118. |
[5] | Liu Debao, Sun Ziwen, Lu Shoutang, Xu Haidong. Expression and clinical significance of ASB6 in colorectal cancer tissues [J]. Journal of International Oncology, 2023, 50(8): 470-474. |
[6] | Chen Zhuo, Tao Jun, Chen Lin, Ke Jing. Value of detection of peripheral blood miR-194 combined with fecal miR-143 in the clinical screening of colorectal cancer [J]. Journal of International Oncology, 2023, 50(5): 268-273. |
[7] | Huang Zhen, Zhang Caiyutian, Ke Shaobo, Shi Wei, Zhao Wensi, Chen Yongshun. Construction of postoperative prognosis model for patients with colorectal cancer [J]. Journal of International Oncology, 2023, 50(3): 157-163. |
[8] | Xu Liangfu, Li Yuanfei. Research progress on tumor microenvironment and immune combination therapy of MSS colorectal cancer [J]. Journal of International Oncology, 2023, 50(3): 186-190. |
[9] | Liu Yujie, Zhao Zhiqiang, Wang Zicheng. Levels and diagnostic value of TOP2A and ERBB2 in peripheral blood mononuclear cells of patients with early colorectal cancer [J]. Journal of International Oncology, 2023, 50(12): 717-722. |
[10] | Tao Hong, Yin Hong, Luo Hong, Tao Jiayu. Potential strategies for targeting tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors for colorectal cancer [J]. Journal of International Oncology, 2023, 50(11): 683-687. |
[11] | Wang Xi, Wu Chuanqing. Research progress in reversing multidrug resistance in colorectal cancer [J]. Journal of International Oncology, 2023, 50(1): 42-46. |
[12] | Gao Yizhao, Liu Yang, Liu Qiulong, Xing Jinliang. Application of circulating cell-free nucleic acid in clinical diagnosis and treatment of colorectal cancer [J]. Journal of International Oncology, 2022, 49(9): 555-559. |
[13] | He Zhefeng, Wu Yiyang, Li Zhenjun, Ying Xiaojiang. Predictive value of inflammatory markers in colorectal cancer [J]. Journal of International Oncology, 2022, 49(9): 560-563. |
[14] | Zhao Ying, Zhang Gehong. Study on the correlations between AGR, PLR and NLR changes and chemotherapy efficacy of metastatic colorectal cancer [J]. Journal of International Oncology, 2022, 49(8): 473-477. |
[15] | Liu Song, Yu Guangji, Wang Qingdong. Efficacy and influencing factors of DEBIRI-TACE combined with regorafenib in the third-line or above treatment of colorectal cancer liver metastases [J]. Journal of International Oncology, 2022, 49(7): 400-407. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||