Journal of International Oncology ›› 2022, Vol. 49 ›› Issue (7): 416-419.doi: 10.3760/cma.j.cn371439-20220408-00079
• Reviews • Previous Articles Next Articles
Zhang Dandan1,2, Lin Gaoren1,2, Xiao Qian1,2, Liu Ying1,2()
Received:
2022-04-08
Revised:
2022-06-10
Online:
2022-07-08
Published:
2022-09-19
Contact:
Liu Ying
E-mail:xiaoying2266@sina.com
Supported by:
Zhang Dandan, Lin Gaoren, Xiao Qian, Liu Ying. Roles of the SoxC family in tumor development and its clinical significance[J]. Journal of International Oncology, 2022, 49(7): 416-419.
[1] |
Grimm D, Bauer J, Wise P, et al. The role of SOX family members in solid tumours and metastasis[J]. Semin Cancer Biol, 2020, 67(Pt 1): 122-153. DOI: 10.1016/j.semcancer.2019.03.004.
doi: 10.1016/j.semcancer.2019.03.004 |
[2] |
Zhang Y, Hou L. Alternate roles of Sox transcription factors beyond transcription initiation[J]. Int J Mol Sci, 2021, 22(11): 5949. DOI: 10.3390/ijms22115949.
doi: 10.3390/ijms22115949 |
[3] |
Kavyanifar A, Turan S, Lie DC. SoxC transcription factors: multifunctional regulators of neurodevelopment[J]. Cell Tissue Res, 2018, 371(1): 91-103. DOI: 10.1007/s00441-017-2708-7.
doi: 10.1007/s00441-017-2708-7 pmid: 29079881 |
[4] |
Lambert S A, Jolma A, Campitelli LF, et al. The human transcription factors[J]. Cell, 2018, 172(4): 650-665. DOI: 10.1016/j.cell.2018.01.029.
doi: S0092-8674(18)30106-5 pmid: 29425488 |
[5] |
Liu Y, Guo W. SOX factors as cell-state regulators in the mammary gland and breast cancer[J]. Semin Cell Dev Biol, 2021, 114: 126-133. DOI: 10.1016/j.semcdb.2021.01.002.
doi: 10.1016/j.semcdb.2021.01.002 pmid: 33583737 |
[6] |
Zhu F, Farnung L, Kaasinen E, et al. The interaction landscape between transcription factors and the nucleosome[J]. Nature, 2018, 562(7725): 76-81. DOI: 10.1038/s41586-018-0549-5.
doi: 10.1038/s41586-018-0549-5 |
[7] |
Zaret KS. Pioneer transcription factors initiating gene network changes[J]. Annu Rev Genet, 2020, 54: 367-385. DOI: 10.1146/annurev-genet-030220-015007.
doi: 10.1146/annurev-genet-030220-015007 |
[8] |
Dodonova SO, Zhu F, Dienemann C, et al. Nucleosome-bound SOX2 and SOX11 structures elucidate pioneer factor function[J]. Nature, 2020, 580(7805): 669-672. DOI: 10.1038/s41586-020-2195-y.
doi: 10.1038/s41586-020-2195-y |
[9] |
Hanieh H, Ahmed EA, Vishnubalaji R, et al. SOX4: epigenetic regulation and role in tumorigenesis[J]. Semin Cancer Biol, 2020, 67(Pt 1): 91-104. DOI: 10.1016/j.semcancer.2019.06.022.
doi: 10.1016/j.semcancer.2019.06.022 pmid: 31271889 |
[10] |
Jiang S, Li T, Yang Z, et al. Deciphering the roles of FOXO1 in human neoplasms[J]. Int J Cancer, 2018, 143(7): 1560-1568. DOI: 10.1002/ijc.31338.
doi: 10.1002/ijc.31338 |
[11] |
Moran JD, Kim HH, Li Z, et al. SOX4 regulates invasion of bladder cancer cells via repression of WNT5a[J]. Int J Oncol, 2019, 55(2): 359-370. DOI: 10.3892/ijo.2019.4832.
doi: 10.3892/ijo.2019.4832 |
[12] |
Mehta GA, Parker JS, Silva GO, et al. Amplification of SOX4 promotes PI3K/Akt signaling in human breast cancer[J]. Breast Cancer Res Treat, 2017, 162(3): 439-450. DOI: 10.1007/s10549-017-4139-2.
doi: 10.1007/s10549-017-4139-2 |
[13] |
Zhang J, Xiao C, Feng Z, et al. SOX4 promotes the growth and metastasis of breast cancer[J]. Cancer Cell Int, 2020, 20: 468. DOI: 10.1186/s12935-020-01568-2.
doi: 10.1186/s12935-020-01568-2 pmid: 33005101 |
[14] |
Guo B, Xiao C, Liu Y, et al. miR-744-5p inhibits multiple mye-loma proliferation, epithelial mesenchymal transformation and glycolysis by targeting SOX12/Wnt/β-catenin signaling[J]. Onco Targets Ther, 2021, 14: 1161-1172. DOI: 10.2147/OTT.S270636.
doi: 10.2147/OTT.S270636 |
[15] |
Liu H, Wu Z, Zhou H, et al. The SOX4/miR-17-92/RB1 axis promotes prostate cancer progression[J]. Neoplasia, 2019, 21(8): 765-776. DOI: 10.1016/j.neo.2019.05.007.
doi: 10.1016/j.neo.2019.05.007 |
[16] |
周永春, 王熙才, 黄云超. sox4基因在肿瘤中的作用机制及异常表达[J]. 国际肿瘤学杂志, 2011, 38(10): 738-741. DOI: 10.3760/cma.j.issn.1673-422X.2011.10.006.
doi: 10.3760/cma.j.issn.1673-422X.2011.10.006 |
[17] |
Tsang SM, Oliemuller E, Howard BA. Regulatory roles for SOX11 in development, stem cells and cancer[J]. Semin Cancer Biol, 2020, 67(Pt 1): 3-11. DOI: 10.1016/j.semcancer.2020.06.015.
doi: 10.1016/j.semcancer.2020.06.015 pmid: 32574812 |
[18] |
Köhler F, Rodríguez-Paredes M. DNA methylation in epidermal differentiation, aging, and cancer[J]. J Invest Dermatol, 2020, 140(1): 38-47. DOI: 10.1016/j.jid.2019.05.011.
doi: 10.1016/j.jid.2019.05.011 |
[19] |
Lawrence M, Daujat S, Schneider R. Lateral thinking: how histone modifications regulate gene expression[J]. Trends Genet, 2016, 32(1): 42-56. DOI: 10.1016/j.tig.2015.10.007.
doi: S0168-9525(15)00193-6 pmid: 26704082 |
[20] |
Nordström L, Andersson E, Kuci V, et al. DNA methylation and histone modifications regulate SOX11 expression in lymphoid and solid cancer cells[J]. BMC Cancer, 2015, 15: 273. DOI: 10.1186/s12885-015-1208-y.
doi: 10.1186/s12885-015-1208-y pmid: 25880212 |
[21] |
Oliemuller E, Kogata N, Bland P, et al. SOX11 promotes invasive growth and ductal carcinoma in situ progression[J]. J Pathol, 2017, 243(2): 193-207. DOI: 10.1002/path.4939.
doi: 10.1002/path.4939 |
[22] |
Chen X, Xu M, Xu X, et al. METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer[J]. Mol Cancer, 2020, 19(1): 106. DOI: 10.1186/s12943-020-01220-7.
doi: 10.1186/s12943-020-01220-7 |
[23] |
Liu L, Dong T, Sheng J. Propofol suppresses gastric cancer progression by regulating circPDSS1/miR-1324/SOX4 axis[J]. Cancer Manag Res, 2021, 13: 6031-6043. DOI: 10.2147/CMAR.S312989.
doi: 10.2147/CMAR.S312989 |
[24] |
Bagati A, Kumar S, Jiang P, et al. Integrin αvβ6-TGFβ-SOX4 pathway drives immune evasion in triple-negative breast cancer[J]. Cancer Cell, 2021, 39(1): 54-67.e9. DOI: 10.1016/j.ccell.2020.12.001.
doi: 10.1016/j.ccell.2020.12.001 |
[25] |
Beekman R, Amador V, Campo E. SOX11, a key oncogenic factor in mantle cell lymphoma[J]. Curr Opin Hematol, 2018, 25(4): 299-306. DOI: 10.1097/MOH.0000000000000434.
doi: 10.1097/MOH.0000000000000434 pmid: 29738333 |
[26] |
Balsas P, Veloza L, Clot G, et al. SOX11, CD70, and Treg cells configure the tumor-immune microenvironment of aggressive mantle cell lymphoma[J]. Blood, 2021, 138(22): 2202-2215. DOI: 10.1182/blood.2020010527.
doi: 10.1182/blood.2020010527 |
[27] |
Shan T, Uyar DS, Wang LS, et al. SOX11 hypermethylation as a tumor biomarker in endometrial cancer[J]. Biochimie, 2019, 162: 8-14. DOI: 10.1016/j.biochi.2019.03.019.
doi: 10.1016/j.biochi.2019.03.019 |
[28] |
Huang J, Ji EH, Zhao X, et al. Sox11 promotes head and neck cancer progression via the regulation of SDCCAG8[J]. J Exp Clin Cancer Res, 2019, 38(1): 138. DOI: 10.1186/s13046-019-1146-7.
doi: 10.1186/s13046-019-1146-7 |
[29] |
Oliemuller E, Newman R, Tsang SM, et al. SOX11 promotes epithelial/mesenchymal hybrid state and alters tropism of invasive breast cancer cells[J]. ELife, 2020, 9: e58374. DOI: 10.7554/eLife.58374.
doi: 10.7554/eLife.58374 |
[30] |
Liu Z, Zhong Y, Chen YJ, et al. SOX11 regulates apoptosis and cell cycle in hepatocellular carcinoma via Wnt/β-catenin signaling pathway[J]. Biotechnol Appl Biochem, 2019, 66(2): 240-246. DOI: 10.1002/bab.1718.
doi: 10.1002/bab.1718 |
[31] | Xu J, Zhang J, Li L, et al. SOX12 expression is associated with progression and poor prognosis in human breast cancer[J]. Am J Transl Res, 2020, 12(12): 8162-8174. |
[32] |
Zou S, Wang C, Liu J, et al. Sox12 is a cancer stem-like cell marker in hepatocellular carcinoma[J]. Mol Cells, 2017, 40(11): 847-854. DOI: 10.14348/molcells.2017.0129.
doi: 10.14348/molcells.2017.0129 |
[33] |
Wang L, Hu F, Shen S, et al. Knockdown of SOX12 expression inhibits the proliferation and metastasis of lung cancer cells[J]. Am J Transl Res, 2017, 9(9): 4003-4014.
doi: <空> pmid: 28979676 |
[34] |
Du F, Feng W, Chen S, et al. Sex determining region Y-box 12 (SOX12) promotes gastric cancer metastasis by upregulating MMP7 and IGF1[J]. Cancer Lett, 2019, 452: 103-118. DOI: 10.1016/j.canlet.2019.03.035.
doi: S0304-3835(19)30191-0 pmid: 30922917 |
[35] |
Du F, Chen J, Liu H, et al. SOX12 promotes colorectal cancer cell proliferation and metastasis by regulating asparagine synthesis[J]. Cell Death Dis, 2019, 10(3): 239. DOI: 10.1038/s41419-019-1481-9.
doi: 10.1038/s41419-019-1481-9 |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[4] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[5] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[6] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[7] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[8] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[9] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[11] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[12] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[13] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[14] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[15] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||