Journal of International Oncology ›› 2021, Vol. 48 ›› Issue (2): 96-100.doi: 10.3760/cma.j.cn371439-20200615-00018
• Reviews • Previous Articles Next Articles
Received:
2020-06-15
Revised:
2020-07-12
Online:
2021-02-08
Published:
2021-03-11
Contact:
Yang Xianghong
E-mail:xianghongyoung@163.com
Zeng Juan, Yang Xianghong. N6-methyladenine methylation regulators and cancer[J]. Journal of International Oncology, 2021, 48(2): 96-100.
[1] |
Boccaletto P, Machnicka MA, Purta E, et al. MODOMICS: a database of RNA modification pathways[J]. Nucleic Acids Res, 2018,46(D1):D303-D307. DOI: 10.1093/nar/gkx1030.
pmid: 29106616 |
[2] |
Lin S, Choe J, Du P, et al. The m(6)A methyltransferase METTL3 promotes translation in human cancer cells[J]. Mol Cell, 2016,62(3):335-345. DOI: 10.1016/j.molcel.2016.03.021.
doi: 10.1016/j.molcel.2016.03.021 pmid: 27117702 |
[3] |
Liu J, Eckert MA, Harada BT, et al. m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer[J]. Nat Cell Biol, 2018,20(9):1074-1083. DOI: 10.1038/s41556-018-0174-4.
pmid: 30154548 |
[4] |
Ma JZ, Yang F, Zhou CC, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-methyladenosine-dependent primary microRNA processing[J]. Hepatology, 2017,65(2):529-543. DOI: 10.1002/hep.28885.
doi: 10.1002/hep.28885 pmid: 27774652 |
[5] |
Wang Q, Chen C, Ding Q, et al. METTL3-mediated m6A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance[J]. Gut, 2020,69(7):1193-1205. DOI: 10.1136/gutjnl-2019-319639.
doi: 10.1136/gutjnl-2019-319639 pmid: 31582403 |
[6] |
Li Y, Xiao J, Bai J, et al. Molecular characterization and clinical relevance of m6A regulators across 33 cancer types[J]. Mol Cancer, 2019,18(1):137. DOI: 10.1186/s12943-019-1066-3.
pmid: 31521193 |
[7] |
Zheng W, Dong X, Zhao Y, et al. Multiple functions and mechanisms underlying the role of METTL3 in human cancers[J]. Front Oncol, 2019,9:1403. DOI: 10.3389/fonc.2019.01403.
doi: 10.3389/fonc.2019.01403 pmid: 31921660 |
[8] |
Chen M, Wei L, Law CT, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2[J]. Hepatology, 2018,67(6):2254-2270. DOI: 10.1002/hep.29683.
doi: 10.1002/hep.29683 pmid: 29171881 |
[9] |
Zhang J, Bai R, Li M, et al. Excessive miR-25-3p maturation via N(6)-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression[J]. Nat Commun, 2019,10(1):1858. DOI: 10.1038/s41467-019-09712-x.
pmid: 31015415 |
[10] |
Zhu W, Si Y, Xu J, et al. Methyltransferase like 3 promotes colo-rectal cancer proliferation by stabilizing CCNE1 mRNA in an m6A-dependent manner[J]. J Cell Mol Med, 2020,24(6):3521-3533. DOI: 10.1111/jcmm.15042.
doi: 10.1111/jcmm.15042 pmid: 32039568 |
[11] |
Peng W, Li J, Chen R, et al. Upregulated METTL3 promotes metastasis of colorectal Cancer via miR-1246/SPRED2/MAPK signaling pathway[J]. J Exp Clin Cancer Res, 2019,38(1):393. DOI: 10.1186/s13046-019-1408-4.
doi: 10.1186/s13046-019-1408-4 pmid: 31492150 |
[12] |
Deng R, Cheng Y, Ye S, et al. m6A methyltransferase METTL3 suppresses colorectal cancer proliferation and migration through p38/ERK pathways[J]. Onco Targets Ther, 2019,12:4391-4402. DOI: 10.2147/ott.S201052.
doi: 10.2147/OTT.S201052 pmid: 31239708 |
[13] |
Li X, Tang J, Huang W, et al. The m6A methyltransferase METTL3: acting as a tumor suppressor in renal cell carcinoma[J]. Oncotarget, 2017,8(56):96103-96116. DOI: 10.18632/oncotarget.21726.
doi: 10.18632/oncotarget.21726 pmid: 29221190 |
[14] |
Cui Q, Shi H, Ye P, et al. m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells[J]. Cell Rep, 2017,18(11):2622-2634. DOI: 10.1016/j.celrep.2017.02.059.
doi: 10.1016/j.celrep.2017.02.059 pmid: 28297667 |
[15] |
Weng H, Huang H, Wu H, et al. METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6A modification[J]. Cell Stem Cell, 2018,22(2):191-205, e9. DOI: 10.1016/j.stem.2017.11.016.
pmid: 29290617 |
[16] |
Sun C, Chang L, Liu C, et al. The study of METTL3 and METTL14 expressions in childhood ETV6/RUNX1-positive acute lymphoblastic leukemia[J]. Mol Genet Genomic Med, 2019,7(10):e00933. DOI: 10.1002/mgg3.933.
pmid: 31429529 |
[17] |
Wu L, Wu D, Ning J, et al. Changes of N6-methyladenosine modulators promote breast cancer progression[J]. BMC Cancer, 2019,19(1):326. DOI: 10.1186/s12885-019-5538-z.
pmid: 30953473 |
[18] |
Chen Y, Peng C, Chen J, et al. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1[J]. Mol Cancer, 2019,18(1):127. DOI: 10.1186/s12943-019-1053-8.
doi: 10.1186/s12943-019-1053-8 pmid: 31438961 |
[19] |
Li H, Su Q, Li B, et al. High expression of WTAP leads to poor prognosis of gastric cancer by influencing tumour-associated T lymphocyte infiltration[J]. J Cell Mol Med, 2020,24(8):4452-4465. DOI: 10.1111/jcmm.15104.
doi: 10.1111/jcmm.15104 pmid: 32176425 |
[20] |
Lan T, Li H, Zhang D, et al. KIAA1429 contributes to liver cancer progression through N6-methyladenosine-dependent post-transcriptional modification of GATA3[J]. Mol Cancer, 2019,18(1):186. DOI: 10.1186/s12943-019-1106-z.
doi: 10.1186/s12943-019-1106-z pmid: 31856849 |
[21] |
Cheng X, Li M, Rao X, et al. KIAA1429 regulates the migration and invasion of hepatocellular carcinoma by altering m6A modification of ID2 mRNA[J]. Onco Targets Ther, 2019,12:3421-3428. DOI: 10.2147/ott.S180954.
pmid: 31118692 |
[22] |
Barros-Silva D, Lobo J, Guimarães-Teixeira C, et al. VIRMA-dependent N6-methyladenosine modifications regulate the expression of long non-coding RNAs CCAT1 and CCAT2 in prostate cancer[J]. Cancers (Basel), 2020,12(4):771. DOI: 10.3390/can-cers12040771.
doi: 10.3390/cancers12040771 |
[23] |
Li Z, Weng H, Su R, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N(6)-methyladenosine RNA demethylase[J]. Cancer Cell, 2017,31(1):127-141. DOI: 10.1016/j.ccell.2016.11.017.
doi: 10.1016/j.ccell.2016.11.017 pmid: 28017614 |
[24] |
Niu Y, Lin Z, Wan A, et al. RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3[J]. Mol Cancer, 2019,18(1):46. DOI: 10.1186/s12943-019-1004-4.
doi: 10.1186/s12943-019-1004-4 pmid: 30922314 |
[25] |
Rong ZX, Li Z, He JJ, et al. Downregulation of fat mass and obesity associated (FTO) promotes the progression of intrahepatic cholangiocarcinoma[J]. Front Oncol, 2019,9:369. DOI: 10.3389/fonc.2019.00369.
doi: 10.3389/fonc.2019.00369 pmid: 31143705 |
[26] |
Zhuang C, Zhuang C, Luo X, et al. N6-methyladenosine demethylase FTO suppresses clear cell renal cell carcinoma through a novel FTO-PGC-1α signalling axis[J]. J Cell Mol Med, 2019,23(3):2163-2173. DOI: 10.1111/jcmm.14128.
doi: 10.1111/jcmm.14128 pmid: 30648791 |
[27] |
Zhang C, Samanta D, Lu H, et al. Hypoxia induces the breast can-cer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA[J]. Proc Natl Acad Sci U S A, 2016,113(14):E2047-E2056. DOI: 10.1073/pnas.1602883113.
doi: 10.1073/pnas.1602883113 pmid: 27001847 |
[28] |
Guo J, Wu Y, Du J, et al. Deregulation of UBE2C-mediated autophagy repression aggravates NSCLC progression[J]. Oncogenesis, 2018,7(6):49. DOI: 10.1038/s41389-018-0054-6.
pmid: 29904125 |
[29] |
Jin D, Guo J, Wu Y, et al. m6A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC[J]. Mol Cancer, 2020,19(1):40. DOI: 10.1186/s12943-020-01161-1.
doi: 10.1186/s12943-020-01161-1 pmid: 32106857 |
[30] |
He Y, Hu H, Wang Y, et al. ALKBH5 inhibits pancreatic cancer motility by decreasing long non-coding RNA KCNK15-AS1 methylation[J]. Cell Physiol Biochem, 2018,48(2):838-846. DOI: 10.1159/000491915.
doi: 10.1159/000491915 pmid: 30032148 |
[31] |
Guo X, Li K, Jiang W, et al. RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner[J]. Mol Cancer, 2020,19(1):91. DOI: 10.1186/s12943-020-01158-w.
doi: 10.1186/s12943-020-01158-w pmid: 32429928 |
[32] |
Tang B, Yang Y, Kang M, et al. m6A demethylase ALKBH5 inhi-bits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling[J]. Mol Cancer, 2020,19(1):3. DOI: 10.1186/s12943-019-1128-6.
doi: 10.1186/s12943-019-1128-6 pmid: 31906946 |
[33] |
Paris J, Morgan M, Campos J, et al. Targeting the RNA m6A reader YTHDF2 selectively compromises cancer stem cells in acute myeloid leukemia[J]. Cell Stem Cell, 2019,25(1):137-148, e136. DOI: 10.1016/j.stem.2019.03.021.
doi: 10.1016/j.stem.2019.03.021 pmid: 31031138 |
[34] |
Xie H, Li J, Ying Y, et al. METTL3/YTHDF2 m6A axis promotes tumorigenesis by degrading SETD7 and KLF4 mRNAs in bladder cancer[J]. J Cell Mol Med, 2020,24(7):4092-4104. DOI: 10.1111/jcmm.15063.
doi: 10.1111/jcmm.15063 pmid: 32126149 |
[35] |
Yang S, Wei J, Cui YH, et al. m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade[J]. Nat Commun, 2019,10(1):2782. DOI: 10.1038/s41467-019-10669-0.
doi: 10.1038/s41467-019-10669-0 pmid: 31239444 |
[36] |
Chen J, Sun Y, Xu X, et al. YTH domain family 2 orchestrates epithelial-mesenchymal transition/proliferation dichotomy in pancreatic cancer cells[J]. Cell Cycle, 2017,16(23):2259-2271. DOI: 10.1080/15384101.2017.1380125.
pmid: 29135329 |
[37] |
Zhong L, Liao D, Zhang M, et al. YTHDF2 suppresses cell prolife-ration and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma[J]. Cancer Lett, 2019,442:252-261. DOI: 10.1016/j.canlet.2018.11.006.
doi: 10.1016/j.canlet.2018.11.006 pmid: 30423408 |
[38] |
Wang X, Zhao BS, Roundtree IA, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency[J]. Cell, 2015,161(6):1388-1399. DOI: 10.1016/j.cell.2015.05.014.
doi: 10.1016/j.cell.2015.05.014 pmid: 26046440 |
[39] |
Bai Y, Yang C, Wu R, et al. YTHDF1 regulates tumorigenicity and cancer stem cell-like activity in human colorectal carcinoma[J]. Front Oncol, 2019,9:332. DOI: 10.3389/fonc.2019.00332.
doi: 10.3389/fonc.2019.00332 pmid: 31131257 |
[40] |
Jin D, Guo J, Wu Y, et al. m6A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP acti-vity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis[J]. J Hematol Oncol, 2019,12(1):135. DOI: 10.1186/s13045-019-0830-6.
doi: 10.1186/s13045-019-0830-6 pmid: 31818312 |
[41] |
Jia R, Chai P, Wang S, et al. m6A modification suppresses ocular melanoma through modulating HINT2 mRNA translation[J]. Mol Cancer, 2019,18(1):161. DOI: 10.1186/s12943-019-1088-x.
doi: 10.1186/s12943-019-1088-x pmid: 31722709 |
[42] |
Klinge CM, Piell KM, Tooley CS, et al. HNRNPA2/B1 is upregulated in endocrine-resistant LCC9 breast cancer cells and alters the miRNA transcriptome when overexpressed in MCF-7 cells[J]. Sci Rep, 2019,9(1):9430. DOI: 10.1038/s41598-019-45636-8.
doi: 10.1038/s41598-019-45636-8 pmid: 31263129 |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[4] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[5] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[6] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[7] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[8] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[9] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[11] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[12] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[13] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[14] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[15] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||