Journal of International Oncology ›› 2017, Vol. 44 ›› Issue (4): 297-299.doi: 10.3760/cma.j.issn.1673-422X.2017.04.015
Previous Articles Next Articles
Hou Xiaoyun, Chu Yanjun.
Online:
2017-04-08
Published:
2017-05-09
Contact:
Chu Yanjun
E-mail:1054900885@qq.com
Hou Xiaoyun, Chu Yanjun.. The mechanism of RNA interference for hepatocellular carcinoma treatment[J]. Journal of International Oncology, 2017, 44(4): 297-299.
[1] Jemal A, Bray F, Center MM, et al. Global cancer statistics[J]. CA Cancer J Clin, 2011, 61(2): 69-90. DOI: 10.3322/caac.20107. [2] Li L, Mu-oz-Culla M, Carmona U, et al. Ferritin-mediated siRNA delivery and gene silencing in human tumor and primary cells[J]. Biomaterials, 2016, 98: 143-151. DOI: 10.1016/j.biomaterials.2016.05.006. [3] PalancaWessels MC, Booth GC, Convertine AJ, et al. Antibody targeting facilitates effective intratumoral siRNA nanoparticle delivery to HER2overexpressing cancer cells[J]. Oncotarget, 2016, 7(8): 9561-9575. DOI: 10.18632/oncotarget.7076. [4] Vander Heiden MG, Cantley LC, Thompson CB. Understanding the warburg effect: the metabolic requirements of cell proliferation[J]. Science, 2009, 324(5930): 1029-1033. DOI: 10.1126/science.1160809. [5] Noguchi C, Kamitori K, Hossain A, et al. D-allose inhibits cancer cell growth by reducing GLUT1 expression[J]. Tohoku J Exp Med, 2016, 238(2): 131-141. DOI: 10.1620/tjem.238.131. [6] Huang Q, Li J, Xing J, et al. CD147 promotes reprogramming of glucose metabolism and cell proliferation in HCC cells by inhibiting the p53dependent signaling pathway[J]. J Hepatol, 2014, 61(4): 859-866. DOI: 10.1016/j.jhep.2014.04.035. [7] Amann T, Maegdefrau U, Hartmann A, et al. GLUT1 expression is increased in hepatocellular carcinoma and promotes tumorigenesis[J]. Am J Pathol, 2009, 174(4): 1544-1552. DOI: 10.2353/ajpath.2009.080596. [8] Cho-Rok J, Yoo J, Jang YJ, et al. Adenovirus-mediated transfer of siRNA against PTTG1 inhibits liver cancer cell growth in vitro and in vivo[J]. Hepatology, 2006, 43(5): 1042-1052. [9] Doan CC, Doan NT, Nguyen QH, et al. Downregulation of Kinesin spindle protein inhibits proliferation, induces apoptosis and increases chemosensitivity in hepatocellular carcinoma cells[J]. Iran Biomed J, 2015, 19(1): 1-16. [10] Liu W, Zhu F, Jiang Y, et al. siRNA targeting survivin inhibits the growth and enhances the chemosensitivity of hepatocellular carcinoma cells[J]. Oncol Rep, 2013, 29(3): 1183-1188. DOI: 10.3892/or.2012.2196. [11] Vogl TJ, Oppermann E, Qian J, et al. Transarterial chemoembolization of hepatocellular carcinoma in a rat model: the effect of additional injection of survivin siRNA to the treatment protocol[J]. BMC Cancer, 2016, 16: 325. DOI: 10.1186/s12885-016-2357-3. [12] Zhao A, Zeng Q, Xie X, et al. MicroRNA-125b induces cancer cell apoptosis through suppression of Bcl-2 expression[J]. J Genet Genomics, 2012, 39(1): 29-35. DOI: 10.1016/j.jgg.2011.12.003. [13] Fu BH, Wu ZZ, Qin J. Effects of integrin α6β1 on migration of hepatocellular carcinoma cells[J]. Mol Biol Rep, 2011, 38(5): 3271-3276. DOI: 10.1007/s11033-0100308-7. [14] Lv G, Lv T, Qiao S, et al. RNA interference targeting human integrin α6 suppresses the metastasis potential of hepatocellular carcinoma cells[J]. Eur J Med Res, 2013, 18: 52. DOI: 10.1186/2047-783X-18-52. [15] Wu JM, Xu Y, Skill NJ, et al. Autotaxin expression and its connection with the TNF-alpha-NF-kappaB axis in human hepatocellular carcinoma[J]. Mol Cancer, 2010, 9: 71. DOI: 10.1186/1476-4598-9-71. [16] BenBaruch A. Organ selectivity in metastasis: regulation by chemokines and their receptors[J]. Clin Exp Metastasis, 2008, 25(4): 345-356. DOI: 10.1007/s10585-007-9097-3. [17] Xue TC, Chen RX, Han D, et al. Down-regulation of CXCR7 inhibits the growth and lung metastasis of human hepatocellular carcinoma cells with highly metastatic potential[J]. Exp Ther Med, 2012, 3(1): 117-123. [18] Lu Y, Zhu M, Li W, et al. Alpha fetoprotein plays a critical role in promoting metastasis of hepatocellular carcinoma cells[J]. J Cell Mol Med, 2016, 20(3): 549-558. DOI: 10.1111/jcmm.12745. [19] Weis SM, Cheresh DA. Tumor angiogenesis: molecular pathways and therapeutic targets[J]. Nat Med, 2011, 17(11): 1359-1370. DOI: 10.1038/nm.2537. [20] Chen S, Feng J, Ma L, et al. RNA interference technology for anti-VEGF treatment[J]. Expert Opin Drug Deliv, 2014, 11(9): 1471-1480. DOI: 10.1517/17425247.2014.926886. [21] Zou Y, Guo CG, Zhang MM. Inhibition of human hepatocellular carcinoma tumor angiogenesis by siRNA silencing of VEGF via hepatic artery perfusion[J]. Eur Rev Med Pharmacol Sci, 2015, 19(24): 4751-4761. [22] Hague S, Zhang L, Oehler MK, et al. Expression of the hypoxically regulated angiogenic factor adrenomedullin correlates with uterine leiomyoma vascular density[J]. Clin Cancer Res, 2000, 6(7): 2808-2814. [23] Li F, Yang R, Zhang X, et al. Silencing of hypoxia-inducible adrenomedullin using RNA interference attenuates hepatocellular carcinoma cell growth in vivo[J]. Mol Med Rep, 2014, 10(3): 1295-1302. DOI: 10.3892/mmr.2014.2320. [24] Meng W, Li X, Bai Z, et al. Silencing alphafetoprotein inhibits VEGF and MMP-2/9 production in human hepatocellular carcinoma cell[J]. PLoS One, 2014, 9(2): e90660. DOI: 10.1371/journal.pone.0090660. [25] Yang T, Zheng ZM, Li XN, et al. MiR-223modulates multidrug resistance via downregulation of ABCB1 in hepatocellular carcinoma cells[J]. Exp Biol Med (Maywood), 2013, 238(9): 1024-1032. DOI: 10.1177/1535370213497321. [26] Su Z, Liu G, Fang T, et al. Silencing MRP1-4 genes by RNA interference enhances sensitivity of human hepatoma cells to chemotherapy[J]. Am J Transl Res, 2016, 8(6): 2790-2802. [27] Tang B, Hu Z, Li Y, et al. Downregulation of δ opioidreceptor by RNA interference enhances the sensitivity of BEL/FU drug-resistant human hepatocellular carcinoma cells to 5-FU[J]. Mol Med Rep, 2016, 13(1): 59-66. DOI: 10.3892/mmr.2015.4511. |
[1] | Ren Lu, Xie Xiaoli, Zhang Kun, Wang Lijuan. Effects and mechanisms of dihydroartemisinin combined with carfilzomib on the activity, proliferation, and apoptosis of multiple myeloma cells [J]. Journal of International Oncology, 2024, 51(3): 129-136. |
[2] | Zhang Keping, Zhao Yongsheng, Yang Juan, Fu Maoyong. Chlorogenic acid induces mitochondrial dysfunction in lung cancer A549 cells by inhibiting the PI3K-Akt pathway [J]. Journal of International Oncology, 2024, 51(1): 21-28. |
[3] | Liu Xiaodi, Su Jianfei, Zhang Jingxian, Wei Xueqin, Jia Yingjie. Research progress of myeloid-derived suppressor cells in tumor angiogenesis [J]. Journal of International Oncology, 2024, 51(1): 50-54. |
[4] | Xiang Yuling, Tan Jiajie, Xiong Yuanguo, Zhao Lirong, Li Chen, Zhang Hong. Effects of Anhydroicaritin on the proliferation, migration and apoptosis of hepatocellular carcinoma cells [J]. Journal of International Oncology, 2023, 50(9): 513-519. |
[5] | Feng Dongxu, Wu Wei, Gao Pingfa, Wang Jun, Shi Lijuan, Chen Dawei, Li Wenbing, Zhang Meifeng. Effects of miR-451 on glycolysis and apoptosis of breast cancer cells by regulating Rho/ROCK1 pathway [J]. Journal of International Oncology, 2023, 50(8): 449-456. |
[6] | Pan Shulan, Liu Chang, He Ping. Effect of fritinib on angiogenesis, tumor growth and IRE1-ASK1-JNK pathway in triple negative breast cancer [J]. Journal of International Oncology, 2023, 50(8): 457-462. |
[7] | Zhang Yuan, Bai Zhiyu, Li Qi, Feng Qinmei. Current status of research on exosomes in malignancies [J]. Journal of International Oncology, 2023, 50(8): 484-488. |
[8] | Wu Jiali, Zhang Jiahui, Zhang Ping, Xiao Xinyue, Li Rui, Zhang Hongyu. Mechanism of Bcl-2 BH4 selective inhibitor BDA-366 on NK/T cell lymphoma cells [J]. Journal of International Oncology, 2023, 50(7): 413-418. |
[9] | Yang Ya, Wang Huili, Liu Yan, Guo Jinfeng, Wang Chunxia, Lyu Min, Shan Changping. Effects of GCSH gene on proliferation and apoptosis of gastric cancer SNU-1 cells [J]. Journal of International Oncology, 2023, 50(5): 257-262. |
[10] | Zhu Yi, Chen Jian. Mechanism of hydrogen sulfide in tumorigenesis and development and its donor-mediated anti-tumor effects [J]. Journal of International Oncology, 2023, 50(12): 729-733. |
[11] | Lian Haiwei, Yang Shuorui, Liu Renzhong. Mechanism study on regulation of glioblastoma cell proliferation and apoptosis by sciadopitysin combined with CX-4945 through Notch1 pathway [J]. Journal of International Oncology, 2022, 49(6): 321-326. |
[12] | Yang Ya, Ning Xiaofei, Li Bingliang, Yao Hui, Shan Changping, Lyu Min. Study on the mechanism of procyanidin mediated anti gastric cancer SNU-1 cell line by inducing the production of reactive oxygen species [J]. Journal of International Oncology, 2022, 49(5): 257-262. |
[13] | Jiang Mengting, Wang Jiachun, Zong Jing. Effects of NFAT5 inhibition on proliferation, invasion, migration and apoptosis of lung adenocarcinoma cells [J]. Journal of International Oncology, 2021, 48(6): 321-327. |
[14] | Wang Xianwei, Shi Meiyan, Wang Fengqin, Qi Fu, Wang Chaozhe, Zhou Fei. Roles of TSA upregulation miR-4298 targeting inhibition of PADI4 expression in inducing U251 cells apoptosis [J]. Journal of International Oncology, 2021, 48(4): 193-199. |
[15] | Ma Xiuzhen, Lu Yan, Zhao Bingbing, Qiu Hongcong, Xu Xun, Wei Min. Effects of total flavonoids from Baeckea frutescens on the migration, invasion and apoptosis of cervical cancer SiHa cells [J]. Journal of International Oncology, 2021, 48(4): 206-211. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||