[1] Wang XB, Wang SS, Zhang QF, et al. Inhibition of tetramethylpyrazine on Pgp, MRP2, MRP3 and MRP5 in multidrug resistant human hepatocellular carcinoma cells. Oncol Rep, 2010, 23(1): 211215.
[2] Zhao L, Jin X, Xu Y, et al. Functional study of the novel multidrug resistance gene HA117 and its comparison to multidrug resistance gene1. J Exp Clin Cancer Res, 2010, 29(1): 98.
[3] Wang YL, Yan YL, Zhou NJ, et al. Mechanism of multidrug resistance of human small cell lung cancer cell line H446/VP. Chin Med J (Engl), 2010, 123(22): 32993303.
[4] Lechler P, Renkawitz T, Campean V, et al. The antiapoptotic gene survivin is highly expressed in human chondrosarcoma and promotes drug resistance in chondrosarcoma cells in vitro. BMC Cancer, 2011, 11: 120.
[5] Li H, Hui L, Xu W, et al. Modulation of Pglycoprotein expression by triptolide in adriamycinresistant K562/A02 cells. Oncol Lett, 2012, 3(2): 485489.
[6] Zhang H, Jiang H, Wang X, et al. Reversion of multidrug resistance in tumor by biocompatible nanomaterials. Mini Rev Med Chem, 2010, 10(8): 737745.
[7] Mi YJ, Liang YJ, Huang HB, et al. Apatinib (YN968D1) reverses multidrug resistance by inhibiting the efflux function of multiple ATPbinding cassette transporters. Cancer Res, 2010, 70(20): 79817991.
[8] Imai Y, Yoshimori M, Fukuda K, et al. The PI3K/Akt inhibitor LY294002 reverses BCRPmediated drug resistance without affecting BCRP translocation. Oncol Rep, 2012, 27(6): 17031709.
[9] Xing AY, Shi DB, Liu W, et al. Restoration of chemosensitivity in cancer cells with MDR phenotype by deoxyribozyme, compared with ribozyme. Exp Mol Pathol, 2013, 94(3): 481485.
[10] Shi R, Peng H, Yuan X, et al. Downregulation of cfos by shRNA sensitizes adriamycinresistant MCF7/ADR cells to chemotherapeutic agents via Pglycoprotein inhibition and apoptosis augmentation. J Cell Biochem, 2013, 114(8): 18901900.
[11] Mosaffa F, Kalalinia F, Parhiz BH, et al. Tumor necrosis factor alpha induces stronger cytotoxicity in ABCG2overexpressing resistant breast cancer cells compared with their drugsensitive parental line. DNA Cell Biol, 2011, 30(6): 413418.
[12] Kim DY, Kim MJ, Kim HB, et al. Suppression of multidrug resistance by treatment with TRAIL in human ovarian and breast cancer cells with high level of cMyc. Biochim Biophys Acta, 2011, 1812(7): 796805.
[13] Lu JJ, Cai YJ, Ding J. The shorttime treatment with curcumin sufficiently decreases cells viability, induces apoptosis and copper enhances these effects in multidrugresistant K562/A02 cells. Mol Cell Biochem, 2012, 360(12): 253260.
[14] Cao SQ, Yin TY, Yang SL. Reversing effects of curcumin on multidrug resistance of Bel7402/5fu cell line. Zhongguo Zhong Xi Yi Jie He Za Zhi, 2012, 32(2): 244247, 252.
[15] Li SZ, Li K, Zhang JH, et al. The effect of quercetin on doxorubicin cytotoxicity in human breast cancer cells. Anticancer Agents Med Chem, 2013, 13(2): 352355.
[16] Yuan J, Wong IL, Jiang T, et al. Synthesis of methylated quercetin derivatives and their reversal activities on Pgp and BCRPmediated multidrug resistance tumour cells. Eur J Med Chem, 2012, 54: 413422.
[17] Lei Y, Tan J, Wink M, et al. An isoquinoline alkaloid from the Chinese herbal plant Corydalis yanhusuo W.T. Wang inhibits Pglycoprotein and multidrug resistanceassociate protein 1. Food Chem, 2013, 136(34): 11171121.
[18] Luo SX, Deng WY, Wang XF, et al. Molecular mechanism of indirubin3′monoxime and Matrine in the reversal of paclitaxel resistance in NCIH520/TAX25 cell line. Chin Med J (Engl), 2013, 126(5): 925929.
[19] Chen G, Wang K, Yang BY, et al. Synergistic antitumor activity of oridonin and arsenic trioxide on hepatocellular carcinoma cells. Int J Oncol, 2012, 40(1): 139147.
[20] Kobayashi E, Lyer AK, Hornicek FJ, et al. Lipidfunctionalized dextran nanosystems to overcome multidrug resistance in cancer: a pilot study. Clin Orthop Relat Res, 2013, 471(3): 915925.
[21] Zhang Z, Liu Z, Ma L, et al. Reversal of multidrug resistance by mitochondrial targeted selfassembled nanocarrier based on stearylamine. Mol Pharm, 2013, 10(6): 24262434.
[22] Dreaden EC, Austin LA, Mackey MA, et al. Size matters: gold nanoparticles in targeted cancer drug delivery. Ther Deliv, 2012, 3(4): 457478.
[23] Zhi F, Dong H, Jia X, et al. Functionalized grapheme oxide mediated adriamycin delivery and miR21 gene silencing to overcome tumor multidrug resistance in vitro. PLoS One, 2013, 8(3): e60034.
[24] Ren F, Chen R, Wang Y, et al. Paclitaxelloaded poly(nbutylcyanoacrylate) nanoparticle delivery system to overcome multidrug resistance in ovarian cancer. Pharm Res, 2011, 28(4): 897906.
[25] Duan J, Mansour HM, Zhang Y, et al. Reversion of multidrug resistance by coencapsulation of doxorubicin and curcumin in chitosan/poly (butylcyanoacrylate) nanoparticles. Int J Pharm, 2012, 426(12): 193201.
[26] Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anticancer drug delivery. J Control Release, 2010, 148(2): 135146.
[27] Huang IP, Sun SP, Cheng SH, et al. Enhanced chemotherapy of cancer using pHsensitive mesoporous silica nanoparticles to antagonize Pglycoproteinmediated drug resistance. Mol Cancer Ther, 2011, 10(5): 761769.
[28] Gao ZG, Tian L, Hu J, et al. Prevention of metastasis in a 4T1 murine breast cancer model by doxorubicin carried by folate conjugated pH sensitive polymeric micelles. J Control Release, 2011, 152(1): 8489. |