[1] El Mjiyad N, CaroMaldonado A, RamirezPeinado S, et al. Sugarfree approaches to cancer cell killing. Oncogene, 2011, 30(3): 253-264.
[2] Levine AJ, PuzioKuter AM. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science, 2010, 330(6009): 1340-1344.
[3] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell, 2011, 144(5): 646-674.
[4] Luo W, Zhong J, Chang R, et al. Hsp70 and CHIP selectively mediate ubiquitination and degradation of hypoxiainducible factor (HIF)1alpha but Not HIF2alpha. J Biol Chem, 2010, 285(6): 3651-3663.
[5] Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol, 2011, 27: 441-464.
[6] Koh MY, Lemos R Jr, Liu X, et al. The hypoxiaassociated factor switches cells from HIF1α to HIF2αdependent signaling promoting stem cell characteristics, aggressive tumor growth and invasion. Cancer Res, 2011, 71(11): 4015-4027.
[7] Koppenol WH, Bounds PL, Dang CV. Otto Warburg′s contributions to current concepts of cancer metabolism. Nat Rev Cancer, 2011, 11(5): 325-337.
[8] Jose C, Bellance N, Rossignol R. Choosing between glycolysis and oxidative phosphorylation: a tumor′s dilemma?. Biochim Biophys Acta, 2011, 1807(6): 552-561.
[9] Smolkova K, PlecitaHlavata L, Bellance N, et al. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int J Biochem Cell Biol, 2011, 43(7): 950-968.
[10] MorenoSanchez R, RodriguezEnriquez S, Saavedra E, et al. The bioenergetics of cancer: is glycolysis the main ATP supplier in all tumor cells?. Bilfactors, 2009, 35(2): 209-225.
[11] Dang CV. Links between metabolism and cancer. Genes Dev, 2012, 26(9): 877-890.
[12] Gao P, Tchernyshyov I, Chang TC, et al. cMyc suppression of miR23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 2009, 458(7239): 762-765.
[13] Semenza GL. HIF1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev, 2010, 20(1): 51-56.
[14] Green ML, Pisano MM, Prough RA, et al. Release of targeted p53 from the mitochondrion as an early signal during mitochondrial dysfunction. Cell Signal, 2013, 25(12): 2383-2390.
[15] Jones RG, Thompson CB. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev, 2009, 23(5): 537-548.
[16] Liu P, Cheng H, Santiago S, et al. Oncogenic PIK3CAdriven mammary tumors frequently recur via PI3K pathwaydependent and PI3K pathwayindependent mechanisms. Nat Med, 2011, 17(9): 1116-1120.
[17] Ilic N, Utermark T, Widlund HR, et al. PI3Ktargeted therapy can be evaded by gene amplification along the MYCeukaryotic translation initiation factor 4E (eIF4E) axis. Proc Natl Acad Sci USA, 2011, 108(37): E699-708.
[18] Wu W, Zhao S. Metabolic changes in cancer: beyond the Warburg effect. Acta Biochim Biophys Sin, 2013, 45(1): 18-26.
[19] Sun Q, Chen X, Ma J, et al. Mammalian target of rapamycin upregulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc Natl Acad Sci USA, 2011, 108(10): 4129-4134.
[20] Zha X, Wang F, Wang Y, et al. Lactate dehydrogenase B is critical for hyperactive mTORmediated tumorigenesis. Cancer Res, 2011, 71(1): 13-18.
[21] Hirasawa T, Miyazawa M, Yasuda M, et al. Alterations of hypoxiainduced factor signaling pathway due to mammalian target of rapamycin (mTOR) suppression in ovarian clear cell adenocarcinoma: in vivo and in vitro explorations for clinical trial. Int J Gynecol Cancer, 2013, 23(7): 1210-1218.
[22] Upadhyay M, Samal J, Kandpal M, et al. The Warburg effect: insights from the past decade. Pharmacol Ther, 2013, 137(3): 318-330.
[23] Hardee ME, Dewhirst MW, Agarwal N, et al. Novel imaging provides new insights into mechanisms of oxygen transport in tumors. Curr Mol Med, 2009, 9(4): 435-441.
[24] Gammon L, Biddle A, Heywood HK, et al. Subsets of cancer stem cells differ intrinsically in their patterns of oxygen metabolism. PLoS One, 2013, 8(4): e62493.
[25] Icard P, Lincet H. The cancer tumor: a metabolic parasite?. Bull Cancer, 2013, 100(5): 427-433.
[26] Chiu M, Ottaviani L, Bianchi MG, et al. Towards a metabolic therapy of cancer?. Acta Biomed, 2012, 83(3): 168-176. |