
Journal of International Oncology ›› 2026, Vol. 53 ›› Issue (3): 163-166.doi: 10.3760/cma.j.cn371439-20250704-00026
• Review • Previous Articles Next Articles
Qiao Jinyang, Li Hui, Feng Qinmei(
)
Received:2025-07-04
Online:2026-03-08
Published:2026-02-09
Contact:
Feng Qinmei
E-mail:qmf369@hotmail.com
Supported by:Qiao Jinyang, Li Hui, Feng Qinmei. Role of UGT in metabolism of malignant tumors and clinical significance[J]. Journal of International Oncology, 2026, 53(3): 163-166.
| [1] | Hu DG, Marri S, Mackenzie PI, et al. The expression profiles and deregulation of UDP-glycosyltransferase (UGT) genes in human cancers and their association with clinical outcomes[J]. Cancers (Basel), 2021, 13(17): 4491. DOI: 10.3390/cancers13174491. |
| [2] | Allain EP, Rouleau M, Lévesque E, et al. Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression[J]. Br J Cancer, 2020, 122(9): 1277-1287. DOI: 10.1038/s41416-019-0722-0. |
| [3] | Zhang L, Ramesh P, Atencia Taboada L, et al. UGT8 mediated sulfatide synthesis modulates BAX localization and dictates apoptosis sensitivity of colorectal cancer[J]. Cell Death Differ, 2025, 32(4): 657-671. DOI: 10.1038/s41418-024-01418-y. |
| [4] | Ji J, Xie M, Qian Q, et al. SOX9-mediated UGT8 expression promotes glycolysis and maintains the malignancy of non-small cell lung cancer[J]. Biochem Biophys Res Commun, 2022, 587: 139-145. DOI: 10.1016/j.bbrc.2021.11.099. |
| [5] | Cao Q, Chen X, Wu X, et al. Inhibition of UGT8 suppresses basal-like breast cancer progression by attenuating sulfatide-ανβ5 axis[J]. J Exp Med, 2018, 215(6): 1679-1692. DOI: 10.1084/jem.20172048. |
| [6] | Liu W, Li J, Zhao R, et al. The uridine diphosphate (UDP)-glycosyltransferases (UGTs) superfamily: the role in tumor cell metabolism[J]. Front Oncol, 2022, 12: 1088458. DOI: 10.3389/fonc.2022.1088458. |
| [7] | Wang SM, Pfeiffer RM, Gierach GL, et al. Use of postmenopausal hormone therapies and risk of histology- and hormone receptor-defined breast cancer: results from a 15-year prospective analysis of NIH-AARP cohort[J]. Breast Cancer Res, 2020, 22(1): 129. DOI: 10.1186/s13058-020-01365-9. |
| [8] | 张喆, 蔡卫民. UGT1A1基因多态性对药物代谢和临床作用影响的进展[J]. 药学实践杂志, 2018, 36(6): 488-492. DOI: 10.3969/j.issn.1006-0111.2018.06.003. |
| [9] | Li Y, Zhou Y, Mao F, et al. miR-452 reverses abnormal glycosy-lation modification of ERα and estrogen resistance in TNBC (triple-negative breast cancer) through targeting UGT1A1[J]. Front Oncol, 2020, 10: 1509. DOI: 10.3389/fonc.2020.01509. |
| [10] | Clusan L, Ferrière F, Flouriot G, et al. A basic review on estrogen receptor signaling pathways in breast cancer[J]. Int J Mol Sci, 2023, 24(7): 6834. DOI: 10.3390/ijms24076834. |
| [11] |
Patel R, Klein P, Tiersten A, et al. An emerging generation of endocrine therapies in breast cancer: a clinical perspective[J]. NPJ Breast Cancer, 2023, 9(1): 20. DOI: 10.1038/s41523-023-00523-4.
pmid: 37019913 |
| [12] | 贺嘉慧, 胡钦勇. 基于GBD数据的中国和美国肺癌发病和死亡趋势及危险因素对比分析[J]. 国际肿瘤学杂志, 2024, 51(1): 29-36. DOI: 10.3760/cma.j.cn371439-20230810-00003. |
| [13] | 金美华, 唐娟, 秦家丽, 等. 2002—2020年间的肺癌流行病学分析[J]. 华夏医学, 2021, 34(6): 34-38. DOI: 10.19296/j.cnki.1008-2409.2021-06-009. |
| [14] | Hu DG, Marri S, Hulin JA, et al. The somatic mutation landscape of UDP-glycosyltransferase (UGT) genes in human cancers[J]. Cancers (Basel), 2022, 14(22): 5708. DOI: 10.3390/cancers14225708. |
| [15] | Khan AB, Patel R, McDonald MF, et al. Integrated clinical genomic analysis reveals xenobiotic metabolic genes are downregulated in meningiomas of current smokers[J]. J Neurooncol, 2023, 163(2): 397-405. DOI: 10.1007/s11060-023-04359-7. |
| [16] |
Cong B, Thakur T, Uribe AH, et al. Colon cancer cells evade drug action by enhancing drug metabolism[J]. Oncogene, 2025, 44(36): 3284-3296. DOI: 10.1038/s41388-025-03472-3.
pmid: 40634495 |
| [17] |
Zhang L, Huang M, Blair IA, et al. Interception of benzo[a]pyrene-7,8-dione by UDP glucuronosyltransferases (UGTs) in human lung cells[J]. Chem Res Toxicol, 2013, 26(10): 1570-1578. DOI: 10.1021/tx400268q.
pmid: 24047243 |
| [18] |
Rugo HS, Tolaney SM, Loirat D, et al. Safety analyses from the phase 3 ASCENT trial of sacituzumab govitecan in metastatic triple-negative breast cancer[J]. NPJ Breast Cancer, 2022, 8(1): 98. DOI: 10.1038/s41523-022-00467-1.
pmid: 36038616 |
| [19] | Lévesque E, Labriet A, Hovington H, et al. Alternative promoters control UGT2B17-dependent androgen catabolism in prostate cancer and its influence on progression[J]. Br J Cancer, 2020, 122(7): 1068-1076. DOI: 10.1038/s41416-020-0749-2. |
| [20] | Yu L, Li RW, Huang H, et al. Transcriptomic analysis of LNCaP tumor xenograft to elucidate the components and mechanisms contributed by tumor environment as targets for dietary prostate cancer prevention studies[J]. Nutrients, 2021, 13(3): 1000. DOI: 10.3390/nu13031000. |
| [21] | Cruz-Topete D, Dominic P, Stokes KY. Uncovering sex-specific mechanisms of action of testosterone and redox balance[J]. Redox Biol, 2020, 31: 101490. DOI: 10.1016/j.redox.2020.101490. |
| [22] |
Kaipainen A, Zhang A, Gil da Costa RM, et al. Testosterone accumulation in prostate cancer cells is enhanced by facilitated diffusion[J]. Prostate, 2019, 79(13): 1530-1542. DOI: 10.1002/pros.23874.
pmid: 31376206 |
| [23] | Mao Y, Yang G, Li Y, et al. Advances in the current understanding of the mechanisms governing the acquisition of castration-resistant prostate cancer[J]. Cancers (Basel), 2022, 14(15): 3744. DOI: 10.3390/cancers14153744. |
| [24] | Pisano C, Tucci M, Di Stefano RF, et al. Interactions between androgen receptor signaling and other molecular pathways in prostate cancer progression: current and future clinical implications[J]. Crit Rev Oncol Hematol, 2021, 157: 103185. DOI: 10.1016/j.critrevonc.2020.103185. |
| [25] | Allain EP, Rouleau M, Vanura K, et al. UGT2B17 modifies drug response in chronic lymphocytic leukaemia[J]. Br J Cancer, 2020, 123(2): 240-251. DOI: 10.1038/s41416-020-0887-6. |
| [26] | Papamichos SI, Jungbauer C. Comment on: "UGT2B17 modifies drug response in chronic lymphocytic leukaemia"[J]. Br J Cancer, 2020, 123(8): 1345-1346. DOI: 10.1038/s41416-020-1005-5. |
| [27] |
Chen Y, Chen L, Yu J, et al. Cirmtuzumab blocks Wnt5a/ROR1 stimulation of NF-κB to repress autocrine STAT3 activation in chronic lymphocytic leukemia[J]. Blood, 2019, 134(13): 1084-1094. DOI: 10.1182/blood.2019001366.
pmid: 31409670 |
| [28] | Chen Y, Shao X, Yang H, et al. Interferon gamma regulates a complex pro-survival signal network in chronic lymphocytic leukemia[J]. Eur J Haematol, 2023, 110(4): 435-443. DOI: 10.1111/ejh.13921. |
| [29] | Shao X, Meng X, Yang H, et al. IFN-γ enhances CLL cell resistance to ABT-199 by regulating MCL-1 and BCL-2 expression via the JAK-STAT3 signaling pathway[J]. Leuk Lymphoma, 2023, 64(1): 71-78. DOI: 10.1080/10428194.2022.213140. |
| [30] |
Rouleau M, Villeneuve L, Allain EP, et al. Non-canonical transcriptional regulation of the poor prognostic factor UGT2B17 in chronic lymphocytic leukemic and normal B cells[J]. BMC Cancer, 2024, 24(1): 410. DOI: 10.1186/s12885-024-12143-7.
pmid: 38566115 |
| [31] |
Allain EP, Rouleau M, Le T, et al. Inactivation of prostaglandin E2 as a mechanism for UGT2B17-mediated adverse effects in chronic lymphocytic leukemia[J]. Front Oncol, 2019, 9: 606. DOI: 10.3389/fonc.2019.00606.
pmid: 31334126 |
| [32] | Holme JA, Vondráček J, Machala M, et al. Lung cancer associated with combustion particles and fine particulate matter (PM2.5)-the roles of polycyclic aromatic hydrocarbons (PAHs) and the aryl hydrocarbon receptor (AhR)[J]. Biochem Pharmacol, 2023, 216: 115801. DOI: 10.1016/j.bcp.2023.115801. |
| [33] | Tian M, Xia P, Gou X, et al. CRISPR screen identified that UGT1A9 was required for bisphenols-induced mitochondria dyshomeostasis[J]. Environ Res, 2022, 205: 112427. DOI: 10.1016/j.envres.2021.112427. |
| [34] |
Hulshof EC, de With M, de Man FM, et al. UGT1A1 genotype-guided dosing of irinotecan: a prospective safety and cost analysis in poor metaboliser patients[J]. Eur J Cancer, 2022, 162: 148-157. DOI: 10.1016/j.ejca.2021.12.009.
pmid: 34998046 |
| [35] | Sharma NK, Bahot A, Sekar G, et al. Understanding cancer's defense against topoisomerase-active drugs: a comprehensive review[J]. Cancers (Basel), 2024, 16(4): 680. DOI: 10.3390/cancers16040680. |
| [36] | Milano G, Innocenti F, Minami H. Liposomal irinotecan (Onivyde): exemplifying the benefits of nanotherapeutic drugs[J]. Cancer Sci, 2022, 113(7): 2224-2231. DOI: 10.1111/cas.15377. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||