
Journal of International Oncology ›› 2025, Vol. 52 ›› Issue (11): 720-725.doi: 10.3760/cma.j.cn371439-20250530-00123
• Review • Previous Articles Next Articles
Liao Zhipeng1,2,3, He Yonglin1,2,3, Du Aichao1,2,3, Pan Yawen1,2,3(
)
Received:2025-05-30
Revised:2025-09-13
Online:2025-11-08
Published:2025-12-21
Contact:
Pan Yawen
E-mail:pyw@lzu.edu.cn
Liao Zhipeng, He Yonglin, Du Aichao, Pan Yawen. Mechanisms of radionuclide therapy for tumors and research advances in gliomas[J]. Journal of International Oncology, 2025, 52(11): 720-725.
| [1] | Ostrom QT, Price M, Neff C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2016-2020[J]. Neuro Oncol, 2023, 25(12 Suppl 2): iv1-iv99. DOI: 10.1093/neuonc/noad149. |
| [2] | Miller KD, Ostrom QT, Kruchko C, et al. Brain and other central nervous system tumor statistics, 2021[J]. CA Cancer J Clin, 2021, 71(5): 381-406. DOI: 10.3322/caac.21693. |
| [3] | Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(1): 17-48. DOI: 10.3322/caac.21763. |
| [4] |
Schaff LR, Mellinghoff IK. Glioblastoma and other primary brain malignancies in adults: a review[J]. Jama, 2023, 329(7): 574-587. DOI: 10.1001/jama.2023.0023.
pmid: 36809318 |
| [5] | Price M, Ballard C, Benedetti J, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2017-2021[J]. Neuro Oncol, 2024, 26(Supplement_6): vi1-vi85. DOI: 10.1093/neuonc/noae145. |
| [6] | 杨学军, 江涛, 陈忠平, 等. 世界卫生组织中枢神经系统肿瘤分类的演变: 1979—2021年[J]. 中国现代神经疾病杂志, 2021, 21(9): 710-724. DOI: 10.3969/j.issn.1672-6731.2021.09.002. |
| [7] | 南阳, 钟跃. 恶性胶质瘤的分子靶向治疗[J]. 国际肿瘤学杂志, 2017, 44(9): 689-692. DOI: 10.3760/cma.j.issn.1673-422X.2017.09.012. |
| [8] |
Xu S, Luo C, Chen D, et al. circMMD reduction following tumor treating fields inhibits glioblastoma progression through FUBP1/FIR/DVL1 and miR-15b-5p/FZD6 signaling[J]. J Exp Clin Cancer Res, 2023, 42(1): 64. DOI: 10.1186/s13046-023-02642-z.
pmid: 36932454 |
| [9] |
Voloshin T, Kaynan N, Davidi S, et al. Tumor-treating fields (TTFields) induce immunogenic cell death resulting in enhanced antitumor efficacy when combined with anti-PD-1 therapy [J]. Cancer Immunol Immunother, 2020, 69(7): 1191-1204. DOI: 10.1007/s00262-020-02534-7.
pmid: 32144446 |
| [10] | Ballo MT, Conlon P, Lavy-Shahaf G, et al. Association of Tumor Treating Fields (TTFields) therapy with survival in newly diagnosed glioblastoma: a systematic review and meta-analysis[J]. J Neurooncol, 2023, 164(1): 1-9. DOI: 10.1007/s11060-023-04348-w. |
| [11] |
Bodei L, Herrmann K, Schöder H, et al. Radiotheranostics in oncology: current challenges and emerging opportunities[J]. Nat Rev Clin Oncol, 2022, 19(8): 534-550. DOI: 10.1038/s41571-022-00652-y.
pmid: 35725926 |
| [12] | Aboagye EO, Barwick TD, Haberkorn U. Radiotheranostics in oncology: making precision medicine possible[J]. CA Cancer J Clin, 2023, 73(3): 255-274. DOI: 10.3322/caac.21768. |
| [13] | Nelson BJB, Andersson JD, Wuest F. Targeted alpha therapy: progress in radionuclide production, radiochemistry, and applications[J]. Pharmaceutics, 2020, 13(1): 49. DOI: 10.3390/pharmaceutics13010049. |
| [14] |
Pomykala KL, Hadaschik BA, Sartor O, et al. Next generation radiotheranostics promoting precision medicine[J]. Ann Oncol, 2023, 34(6): 507-519. DOI: 10.1016/j.annonc.2023.03.001.
pmid: 36924989 |
| [15] |
Song H, Sgouros G. Alpha and beta radiation for theragnostics[J]. PET Clin, 2024, 19(3): 307-323. DOI: 10.1016/j.cpet.2024.03.006.
pmid: 38688775 |
| [16] | 肖楠, 孙鹏飞. 氧化应激在胶质瘤放化疗敏感性中的研究进展[J]. 国际肿瘤学杂志, 2022, 49(6): 357-361. DOI: 10.3760/cma.j.cn371439-20220309-00068. |
| [17] | Eychenne R, Chérel M, Haddad F, et al. Overview of the most promising radionuclides for targeted alpha therapy: the “hopeful eight”[J]. Pharmaceutics, 2021, 13(6): 906. DOI: 10.3390/pharmaceutics13060906. |
| [18] | Howell RW. Advancements in the use of auger electrons in science and medicine during the period 2015-2019[J]. Int J Radiat Biol, 2023, 99(1): 2-27. DOI: 10.1080/09553002.2020.1831706. |
| [19] |
Filippi L, Urso L, Evangelista L. PARP-targeted radiotheranostics with auger electrons: an updated overview[J]. Curr Issues Mol Biol, 2024, 46(4): 3039-3049. DOI: 10.3390/cimb46040190.
pmid: 38666920 |
| [20] |
Nelson BJB, Krol V, Bansal A, et al. Aspects and prospects of preclinical theranostic radiopharmaceutical development[J]. Theranostics, 2024, 14(17): 6446-6470. DOI: 10.7150/thno.100339.
pmid: 39479448 |
| [21] | Schuchardt C, Zhang J, Kulkarni HR, et al. Prostate-specific membrane antigen radioligand therapy using (177)Lu-PSMA I&T and (177)Lu-PSMA-617 in patients with metastatic castration-resistant prostate cancer: comparison of safety, biodistribution, and dosimetry[J]. J Nucl Med, 2022, 63(8): 1199-1207. DOI: 10.2967/jnumed.121.262713. |
| [22] |
Morris MJ, Castellano D, Herrmann K, et al. 177Lu-PSMA-617 versus a change of androgen receptor pathway inhibitor therapy for taxane-naive patients with progressive metastatic castration-resistant prostate cancer (PSMAfore): a phase 3, randomised, controlled trial[J]. Lancet, 2024, 404(10459): 1227-1239. DOI: 10.1016/S0140-6736(24)01653-2.
pmid: 39293462 |
| [23] | Fortunati E, Argalia G, Zanoni L, et al. New PET radiotracers for the imaging of neuroendocrine neoplasms[J]. Curr Treat Options Oncol, 2022, 23(5): 703-720. DOI: 10.1007/s11864-022-00967-z. |
| [24] | Tang H, Cai L, He X, et al. Radiation-induced bystander effect and its clinical implications[J]. Front Oncol, 2023, 13: 1124412. DOI: 10.3389/fonc.2023.1124412. |
| [25] | Medler TR, Blair TC, Crittenden MR, et al. Defining immunogenic and radioimmunogenic tumors[J]. Front Oncol, 2021, 11: 667075. DOI: 10.3389/fonc.2021.667075. |
| [26] | Saini S, Gurung P. A comprehensive review of sensors of radiation-induced damage, radiation-induced proximal events, and cell death[J]. Immunol Rev, 2025, 329(1): e13409. DOI: 10.1111/imr.13409. |
| [27] | Zhao L, Pang Y, Zhou Y, et al. Antitumor efficacy and potential mechanism of FAP-targeted radioligand therapy combined with immune checkpoint blockade[J]. Signal Transduct Target Ther, 2024, 9(1): 142. DOI: 10.1038/s41392-024-01853-w. |
| [28] |
Kleinendorst SC, Oosterwijk E, Bussink J, et al. Combining targeted radionuclide therapy and immune checkpoint inhibition for cancer treatment[J]. Clin Cancer Res, 2022, 28(17): 3652-3657. DOI: 10.1158/1078-0432.CCR-21-4332.
pmid: 35471557 |
| [29] |
Verginadis II, Citrin DE, Ky B, et al. Radiotherapy toxicities: mechanisms, management, and future directions[J]. Lancet, 2025, 405(10475): 338-352. DOI: 10.1016/S0140-6736(24)02319-5.
pmid: 39827884 |
| [30] | 文英美, 夏锦雄, 王园园, 等. 放疗对抗肿瘤免疫的影响: 从基础到临床[J]. 国际肿瘤学杂志, 2025, 52(4): 231-236. DOI: 10.3760/cma.j.cn371439-20240727-00038. |
| [31] | Youssef A, Sahgal A, Das S. Radioresistance and brain metastases: a review of the literature and applied perspective[J]. Front Oncol, 2024, 14: 1477448. DOI: 10.3389/fonc.2024.1477448. |
| [32] | Zhou T, Zhang LY, He JZ, et al. Review: mechanisms and perspective treatment of radioresistance in non-small cell lung cancer[J]. Front Immunol, 2023, 14: 1133899. DOI: 10.3389/fimmu.2023.1133899. |
| [33] |
Kleinendorst SC, Oosterwijk E, Molkenboer-Kuenen J, et al. Towards effective CAIX-targeted radionuclide and checkpoint inhibition combination therapy for advanced clear cell renal cell carcinoma[J]. Theranostics, 2024, 14(9): 3693-3707. DOI: 10.7150/thno.96944.
pmid: 38948062 |
| [34] |
Hébert K, Bodin-Cufi P, Fersing C, et al. New drugs for targeted radionuclide therapy in metastatic prostate cancer[J]. Eur Urol Focus, 2024, 10(4): 514-517. DOI: 10.1016/j.euf.2024.07.016.
pmid: 39142998 |
| [35] |
Mourtada F, Tomiyoshi K, Sims-Mourtada J, et al. Actinium-225 targeted agents: where are we now?[J]. Brachytherapy, 2023, 22(6): 697-708. DOI: 10.1016/j.brachy.2023.06.228.
pmid: 37690972 |
| [36] | Wichmann CW, Morgan KA, Cao Z, et al. Radiolabeling and preclinical evaluation of therapeutic efficacy of 225Ac-ch806 in glioblastoma and colorectal cancer xenograft models[J]. J Nucl Med, 2024, 65(9): 1456-1462. DOI: 10.2967/jnumed.123.266894. |
| [37] | Królicki L, Bruchertseifer F, Kunikowska J, et al. Safety and efficacy of targeted alpha therapy with 213Bi-DOTA-substance P in recurrent glioblastoma[J]. Eur J Nucl Med Mol Imaging, 2019, 46(3): 614-622. DOI: 10.1007/s00259-018-4225-7. |
| [38] | Królicki L, Kunikowska J, Bruchertseifer F, et al. Locoregional treatment of glioblastoma with targeted α therapy: [213Bi] Bi-DOTA-substance P versus [225Ac] Ac-DOTA-substance P-analysis of influence parameters[J]. Clin Nucl Med, 2023, 48(5): 387-392. DOI: 10.1097/RLU.0000000000004608. |
| [39] | Flux G, Leek F, Gape P, et al. Iodine-131 and iodine-131-meta-iodobenzylguanidine dosimetry in cancer therapy[J]. Semin Nucl Med, 2022, 52(2): 167-177. DOI: 10.1053/j.semnuclmed.2021.11.002. |
| [40] |
Boucai L, Zafereo M, Cabanillas ME. Thyroid cancer: a review[J]. JAMA, 2024, 331(5): 425-435. DOI: 10.1001/jama.2023.26348.
pmid: 38319329 |
| [41] | Sobral DV, Fuscaldi LL, Durante ACR, et al. Comparative evaluation of radiochemical and biological properties of 131I-and [99mTc]Tc(CO)3-labeled RGD analogues planned to interact with the αvβ3 integrin expressed in glioblastoma[J]. Pharmaceuticals (Basel), 2022, 15(2): 116. DOI: 10.3390/ph15020116. |
| [42] | Gao J, Fang L, Sun D, et al. 131I-labeled and DOX-loaded multifunctional nanoliposomes for radiotherapy and chemotherapy in brain gliomas[J]. Brain Res, 2020, 1739: 145218. DOI: 10.1016/j.brainres.2016.12.014. |
| [43] |
Higashi Y, Ma Y, Matsumoto K, et al. Auger electrons and DNA double-strand breaks studied by using iodine-containing chemicals[J]. Enzymes, 2022, 51: 101-115. DOI: 10.1016/bs.enz.2022.08.007.
pmid: 36336404 |
| [44] | Madsen KL, Therkelsen ASN, Langkjær N, et al. Auger electron therapy of glioblastoma using [125I]5-iodo-2'-deoxyuridine and concomitant chemotherapy-evaluation of a potential treatment strategy[J]. Nucl Med Biol, 2021, 96-97: 35-40. DOI: 10.1016/j.nucmedbio.2021.03.001. |
| [45] |
Pirovano G, Jannetti SA, Carter LM, et al. Targeted brain tumor radiotherapy using an auger emitter[J]. Clin Cancer Res, 2020, 26(12): 2871-2881. DOI: 10.1158/1078-0432.CCR-19-2440.
pmid: 32066626 |
| [46] | Liu W, Ma H, Liang R, et al. Targeted alpha therapy of glioma using 211At-labeled heterodimeric peptide targeting both VEGFR and integrins[J]. Mol Pharm, 2022, 19(9): 3206-3216. DOI: 10.1021/acs.molpharmaceut.2c00349. |
| [47] | Jannetti SA, Carlucci G, Carney B, et al. PARP-1-targeted radiotherapy in mouse models of glioblastoma[J]. Journal of Nuclear Medicine, 2018, 59(8): 1225-1233. DOI: 10.2967/jnumed.117.205054. |
| [48] | Roncali L, Marionneau-Lambot S, Roy C, et al. Brain intratumoural astatine-211 radiotherapy targeting syndecan-1 leads to durable glioblastoma remission and immune memory in female mice[J]. EBioMedicine, 2024, 105: 105202. DOI: 10.1016/j.ebiom.2024.105202. |
| [49] | Lai C, Cao R, Li R, et al. Fibroblast activation protein targeting probe with Gly-Pro sequence for PET of glioblastoma[J]. Mol Pharm, 2023, 20(8): 4120-4128. DOI: 10.1021/acs.molpharmaceut.3c00248. |
| [50] | Ge W, Chen G, Huang X, et al. Heteroions radii matching produced intensely luminescent bismuth-Ag2S nanocrystals for through-skull NIR-Ⅱ imaging of orthotopic glioma[J]. Nano Lett, 2024, 24(15): 4562-4570. DOI: 10.1021/acs.nanolett.4c00604. |
| [51] | Ge MH, Zhu XH, Shao YM, et al. Synthesis and characterization of CD133 targeted aptamer-drug conjugates for precision therapy of anaplastic thyroid cancer[J]. Biomater Sci, 2021, 9(4): 1313-1324. DOI: 10.1039/d0bm01832e. |
| [1] | Dai Yujuan, Chen Xianying, Huang Wei, Chen Dachao. Analysis of influencing factors and construction of a risk prediction model for early death in adult glioma [J]. Journal of International Oncology, 2025, 52(10): 609-613. |
| [2] | Liu Jing, Zhang Jun. Progress in the study of redifferentiation therapy for radioactive iodine-refractory differentiated thyroid carcinoma [J]. Journal of International Oncology, 2024, 51(7): 464-467. |
| [3] | Liu Pingping, He Xuefang, Zhang Yi, Yang Xu, Zhang Shanshan, Ji Yifei. Risk factors of postoperative recurrence in patients with primary brain glioma and prediction model construction [J]. Journal of International Oncology, 2024, 51(4): 193-197. |
| [4] | Du Aichao, Cheng Houxiang, Dai Junqiang, Pan Yawen. Advances in the study of the role of tumor treating fields therapy in the treatment of glioblastoma [J]. Journal of International Oncology, 2024, 51(10): 639-644. |
| [5] | Xiao Nan, Sun Pengfei. Research progress of oxidative stress in the sensitivity of chemoradiotherapy for gliomas [J]. Journal of International Oncology, 2022, 49(6): 357-361. |
| [6] | Zhu Yishuo, Cui Yujie, Liu Qi, Li Jun, Fan Yuechao. Analysis of risk factors and prediction model establishment for early postoperative recurrence in glioma patients [J]. Journal of International Oncology, 2022, 49(2): 79-83. |
| [7] | Kong Chunyu, Sun Pengfei. SLC7A11 and glioma [J]. Journal of International Oncology, 2022, 49(10): 604-607. |
| [8] | Guo Shihao, Ren Yeqing, Guo Geng. Molecular mechanism of vasculogenic mimicry in brain glioma [J]. Journal of International Oncology, 2021, 48(6): 362-365. |
| [9] | Wang Xianwei, Shi Meiyan, Wang Fengqin, Qi Fu, Wang Chaozhe, Zhou Fei. Roles of TSA upregulation miR-4298 targeting inhibition of PADI4 expression in inducing U251 cells apoptosis [J]. Journal of International Oncology, 2021, 48(4): 193-199. |
| [10] | Sun Yanqi, Ren Yeqing, Guo Geng. Mechanism of inhibitory effect of interferon and its related signal pathway on the invasion of glioma [J]. Journal of International Oncology, 2021, 48(3): 172-175. |
| [11] | Zhao Congxuan, Yu Tao. Mining and prediction of glioma-related genes [J]. Journal of International Oncology, 2020, 47(5): 293-296. |
| [12] | Nan Yang, Zhong Yue. New research advances of long non-coding RNA in glioma [J]. Journal of International Oncology, 2020, 47(2): 98-102. |
| [13] | Zhang Wen, Song Qibin, Hu Weiguo. Clinical application of multimodal magnetic resonance imaging in glioma [J]. Journal of International Oncology, 2020, 47(11): 686-690. |
| [14] | Chen Liang, Qin Jun, Lei Junrong, Liu Jun, Wang Lu. miR-1254 inhibits the proliferation and invasion of glioma cells by targeting CSF-1 [J]. Journal of International Oncology, 2020, 47(10): 577-584. |
| [15] | Zhang Qianhui, Zhang Yang, Su Weipeng, Zhang Song′an, Liu Pan, Zhao Huarong. Expressions of LSD1, MGMT and Ki-67 in high-grade glioma and their influences on prognosis [J]. Journal of International Oncology, 2019, 46(9): 519-525. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||