
Journal of International Oncology ›› 2025, Vol. 52 ›› Issue (11): 726-731.doi: 10.3760/cma.j.cn371439-20250619-00124
• Review • Previous Articles Next Articles
Ma Yongjia1, Peng Siyu1, Sun Pengfei2(
)
Received:2025-06-19
Revised:2025-07-08
Online:2025-11-08
Published:2025-12-21
Contact:
Sun Pengfei
E-mail:ery_sunpf@lzu.edu.cn
Ma Yongjia, Peng Siyu, Sun Pengfei. Research progress on combined radiotherapy, chemotherapy, and immunotherapy for cervical cancer[J]. Journal of International Oncology, 2025, 52(11): 726-731.
| [1] | Filho AM, Laversanne M, Ferlay J, et al. The GLOBOCAN 2022 cancer estimates: data sources, methods, and a snapshot of the cancer burden worldwide[J]. Int J Cancer, 2025, 156(7): 1336-1346. DOI: 10.1002/ijc.35278. |
| [2] | Chen SW, Liang JA, Yang SN, et al. Radiation injury to intestine following hysterectomy and adjuvant radiotherapy for cervical cancer[J]. Gynecol Oncol, 2004, 95(1): 208-214. DOI: 10.1016/j.ygyno.2004.07.003. |
| [3] | Assi S, Barling M, Al-Hamid A, et al. Exploring the adverse effects of chemotherapeutic agents used in the treatment of cervical and ovarian cancer from the patients' perspective: a content analysis of the online discussion forums[J]. Eur J Hosp Pharm, 2021, 28(Suppl 2): e35-e40. DOI: 10.1136/ejhpharm-2019-002162. |
| [4] |
Lorusso D, Xiang Y, Hasegawa K, et al. Pembrolizumab or placebo with chemoradiotherapy followed by pembrolizumab or placebo for newly diagnosed, high-risk, locally advanced cervical cancer (ENGOT-cx11/GOG-3047/KEYNOTE-A18): a randomised, double-blind, phase 3 clinical trial[J]. Lancet, 2024, 403(10434): 1341-1350. DOI: 10.1016/s0140-6736(24)00317-9.
pmid: 38521086 |
| [5] | Xue J, Yan X, Ding Q, et al. Effect of neoadjuvant chemotherapy on the immune microenvironment of gynaecological tumours[J]. Ann Med, 2023, 55(2): 2282181. DOI: 10.1080/07853890.2023.2282181. |
| [6] |
Formenti SC, Demaria S. Combining radiotherapy and cancer immunotherapy: a paradigm shift[J]. J Natl Cancer Inst, 2013, 105(4): 256-265. DOI: 10.1093/jnci/djs629.
pmid: 23291374 |
| [7] | Dorta-Estremera S, Colbert LE, Nookala SS, et al. Kinetics of intratumoral immune cell activation during chemoradiation for cervical cancer[J]. Int J Radiat Oncol Biol Phys, 2018, 102(3): 593-600. DOI: 10.1016/j.ijrobp.2018.06.404. |
| [8] | Du SS, Chen GW, Yang P, et al. Radiation therapy promotes hepatocellular carcinoma immune cloaking via PD-L1 upregulation induced by cGAS-STING activation[J]. Int J Radiat Oncol Biol Phys, 2022, 112(5): 1243-1255. DOI: 10.1016/j.ijrobp.2021.12.162. |
| [9] | Melief CJM, Welters MJP, Vergote I, et al. Strong vaccine responses during chemotherapy are associated with prolonged cancer survival[J]. Sci Transl Med, 2020, 12(535): eaaz8235. DOI: 10.1126/scitranslmed.aaz8235. |
| [10] | Kim NR, Kim YJ. Oxaliplatin regulates myeloid-derived suppressor cell-mediated immunosuppression via downregulation of nuclear factor-κB signaling[J]. Cancer Med, 2019, 8(1): 276-288. DOI: 10.1002/cam4.1878. |
| [11] |
Liang Y, Lü W, Zhang X, et al. Tumor-infiltrating CD8+ and FOXP3+ lymphocytes before and after neoadjuvant chemotherapy in cervical cancer[J]. Diagn Pathol, 2018, 13(1): 93. DOI: 10.1186/s13000-018-0770-4.
pmid: 30474571 |
| [12] | Kast F, Klein C, Umaña P, et al. Advances in identification and selection of personalized neoantigen/T-cell pairs for autologous adoptive T cell therapies[J]. Oncoimmunology, 2021, 10(1): 1869389. DOI: 10.1080/2162402x.2020.1869389. |
| [13] | Rodrigues M, Vanoni G, Loap P, et al. Nivolumab plus chemoradiotherapy in locally-advanced cervical cancer: the NICOL phase 1 trial[J]. Nat Commun, 2023, 14(1): 3698. DOI: 10.1038/s41467-023-39383-8. |
| [14] | Mayadev J, Zamarin D, Deng W, et al. Neoadjuvant or concurrent atezolizumab with chemoradiation for locally advanced cervical cancer: a randomized phase Ⅰ trial[J]. Nat Commun, 2025, 16(1): 553. DOI: 10.1038/s41467-024-55200-2. |
| [15] | Knisely A, Ahmed J, Stephen B, et al. Phase 1/2 trial of avelumab combined with utomilumab (4-1BB agonist), PF-04518600 (OX40 agonist), or radiotherapy in patients with advanced gynecologic malignancies[J]. Cancer, 2024, 130(3): 400-409. DOI: 10.1002/cncr.35063. |
| [16] |
Lorusso D, Xiang Y, Hasegawa K, et al. Pembrolizumab or placebo with chemoradiotherapy followed by pembrolizumab or placebo for newly diagnosed, high-risk, locally advanced cervical cancer (ENGOT-cx11/GOG-3047/KEYNOTE-A18): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet, 2024, 404(10460): 1321-1332. DOI: 10.1016/S0140-6736(24)01808-7.
pmid: 39288779 |
| [17] |
How JA, Jazaeri AA. Immunotherapy in locally advanced cervical cancer: integrating KEYNOTE-A18 into management strategies[J]. Med, 2024, 5(6): 487-489. DOI: 10.1016/j.medj.2024.05.001.
pmid: 38878765 |
| [18] |
Monk BJ, Toita T, Wu X, et al. Durvalumab versus placebo with chemoradiotherapy for locally advanced cervical cancer (CALLA): a randomised, double-blind, phase 3 trial[J]. Lancet Oncol, 2023, 24(12): 1334-1348. DOI: 10.1016/s1470-2045(23)00479-5.
pmid: 38039991 |
| [19] | 张露, 蒋华, 林州, 等. 免疫检查点抑制剂治疗复发转移性宫颈癌的疗效及预后分析[J]. 国际肿瘤学杂志, 2023, 50(8): 475-483. DOI: 10.3760/cma.j.cn371439-20230227-00091. |
| [20] |
Li K, Chen J, Hu Y, et al. Neoadjuvant chemotherapy plus camrelizumab for locally advanced cervical cancer (NACI study): a multicentre, single-arm, phase 2 trial[J]. Lancet Oncol, 2024, 25(1): 76-85. DOI: 10.1016/s1470-2045(23)00531-4.
pmid: 38048802 |
| [21] | Zheng X, Gu H, Cao X, et al. Tislelizumab for cervical cancer: a retrospective study and analysis of correlative blood biomarkers[J]. Front Immunol, 2023, 14: 1113369. DOI: 10.3389/fimmu.2023.1113369. |
| [22] | Xia L, Wang J, Wang C, et al. Efficacy and safety of zimberelimab (GLS-010) monotherapy in patients with recurrent or metastatic cervical cancer: a multicenter, single-arm, phase Ⅱ study[J]. Int J Gynecol Cancer, 2023, 33(12): 1861-1868. DOI: 10.1136/ijgc-2023-004705. |
| [23] | Ni BQ, Pan MM, He LX, et al. Zimberelimab combined with systemic therapy extended tumor control in post-radiotherapy cervical cancer with brain metastases: a case report[J]. J Obstet Gynaecol Res, 2024, 50(4): 740-745. DOI: 10.1111/jog.15887. |
| [24] | Ou D, Cai R, Qi WX, et al. Toripalimab combined with definitive chemoradiotherapy for locally advanced cervical squamous cell carcinoma patients (TRACE): a single-arm, phase Ⅰ/Ⅱ trial[J]. Cancer Immunol Immunother, 2024, 73(12): 244. DOI: 10.1007/s00262-024-03823-1. |
| [25] |
Massarelli E, William W, Johnson F, et al. Combining immune checkpoint blockade and tumor-specific vaccine for patients with incurable human papillomavirus 16-related cancer: a phase 2 clinical trial[J]. JAMA Oncol, 2019, 5(1): 67-73. DOI: 10.1001/jamaoncol.2018.4051.
pmid: 30267032 |
| [26] | Hasan Y, Furtado L, Tergas A, et al. A phase 1 trial assessing the safety and tolerability of a therapeutic DNA vaccination against HPV16 and HPV18 E6/E7 oncogenes after chemoradiation for cervical cancer[J]. Int J Radiat Oncol Biol Phys, 2020, 107(3): 487-498. DOI: 10.1016/j.ijrobp.2020.02.031. |
| [27] | Huang H, Nie CP, Liu XF, et al. Phase Ⅰ study of adjuvant immunotherapy with autologous tumor-infiltrating lymphocytes in locally advanced cervical cancer[J]. J Clin Invest, 2022, 132(15): e157726. DOI: 10.1172/jci157726. |
| [28] | O'Malley DM, Neffa M, Monk BJ, et al. Dual PD-1 and CTLA-4 checkpoint blockade using balstilimab and zalifrelimab combination as second-line treatment for advanced cervical cancer: an open-label phase Ⅱ study[J]. J Clin Oncol, 2022, 40(7): 762-771. DOI: 10.1200/jco.21.02067. |
| [29] |
Wu X, Sun Y, Yang H, et al. Cadonilimab plus platinum-based chemotherapy with or without bevacizumab as first-line treatment for persistent, recurrent, or metastatic cervical cancer (COMPASSION-16): a randomised, double-blind, placebo-controlled phase 3 trial in China[J]. Lancet, 2024, 404(10463): 1668-1676. DOI: 10.1016/s0140-6736(24)02135-4.
pmid: 39426385 |
| [30] |
Berenguer Frances MA, Linares-Galiana I, Cañas Cortés R, et al. Changes of CD68, CD163, and PD-L1 tumor expression during high-dose-rate and pulsed-dose-rate brachytherapy for cervical cancer[J]. Brachytherapy, 2020, 19(1): 51-59. DOI: 10.1016/j.brachy.2019.09.009.
pmid: 31690516 |
| [31] | Da Silva DM, Enserro DM, Mayadev JS, et al. Immune activation in patients with locally advanced cervical cancer treated with ipilimumab following definitive chemoradiation (GOG-9929)[J]. Clin Cancer Res, 2020, 26(21): 5621-30. DOI: 10.1158/1078-0432.Ccr-20-0776. |
| [32] | Li R, Liu Y, Yin R, et al. The dynamic alternation of local and systemic tumor immune microenvironment during concurrent chemoradiotherapy of cervical cancer: a prospective clinical trial[J]. Int J Radiat Oncol Biol Phys, 2021, 110(5): 1432-1441. DOI: 10.1016/j.ijrobp.2021.03.003. |
| [33] | Ma CY, Zhao J, Qian KY, et al. Analysis of nutritional risk, skeletal muscle depletion, and lipid metabolism phenotype in acute radiation enteritis[J]. World J Gastrointest Surg, 2023, 15(12): 2831-2843. DOI: 10.4240/wjgs.v15.i12.2831. |
| [34] | Dover L, Dulaney C. Spine stereotactic radiosurgery, prostate radiation frequency, adjuvant chemotherapy for cervical cancer, bacteria and radiation dermatitis, and breast conservation therapy for multi-focal disease[J]. Pract Radiat Oncol, 2023, 13(5): 379-383. DOI: 10.1016/j.prro.2023.06.002. |
| [35] | Tu Y, Luo L, Zhou Q, et al. Fecal microbiota transplantation repairs radiation enteritis through modulating the gut microbiota-mediated tryptophan metabolism[J]. Radiat Res, 2024, 201(6): 572-585. DOI: 10.1667/rade-23-00189.1. |
| [36] | Monk BJ, Colombo N, Tewari KS, et al. First-line pembrolizumab+chemotherapy versus placebo+chemotherapy for persistent, recurrent, or metastatic cervical cancer: final overall survival results of KEYNOTE-826[J]. J Clin Oncol, 2023, 41(36): 5505-5511. DOI: 10.1200/jco.23.00914. |
| [37] | Gutiérrez-Hoya A, Soto-Cruz I. NK cell regulation in cervical cancer and strategies for immunotherapy[J]. Cells, 2021, 10(11): 3104. DOI: 10.3390/cells10113104. |
| [38] |
Monk BJ, Tewari KS, Dubot C, et al. Health-related quality of life with pembrolizumab or placebo plus chemotherapy with or without bevacizumab for persistent, recurrent, or metastatic cervical cancer (KEYNOTE-826): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2023, 24(4): 392-402. DOI: 10.1016/s1470-2045(23)00052-9.
pmid: 36878237 |
| [39] | Colombo N, Dubot C, Lorusso D, et al. Pembrolizumab for persistent, recurrent, or metastatic cervical cancer[J]. N Engl J Med, 2021, 385(20): 1856-1867. DOI: 10.1056/NEJMoa2112435. |
| [40] | 张力忆, 蒋奉希, 桂定清. 贝伐珠单抗联合紫杉醇+卡铂治疗持续性或复发性宫颈癌的临床观察[J]. 中国药房, 2024, 35(17): 2126-2130. DOI: 10.6039/j.issn.1001-0408.2024.17.12. |
| [41] | 向阳, 曹金龙, 聂桂梅, 等. 贝伐珠单抗联合紫杉醇和卡铂治疗复发/转移性宫颈癌患者的临床研究[J]. 中国临床药理学杂志, 2024, 40(8): 1121-1125. DOI: 10.13699/j.cnki.1001-6821.2024.08.007. |
| [42] | Zhang Z, Ma Q, Zhang L, et al. Human papillomavirus and cervical cancer in the microbial world: exploring the vaginal microecology[J]. Front Cell Infect Microbiol, 2024, 14: 1325500. DOI: 10.3389/fcimb.2024.1325500. |
| [1] | Wu Songyou, Wang Gang, Wang Wenling, Dong Hongmin, Chen Weiwei, Li Xiaokai, Chen Wanghua, Zuo Kai. Prospective cohort study on the effect of abdominal circumference on the intestinal radiation dose volume and the acute intestinal toxicity in pelvic intensity modulated radiation therapy for rectal cancer patients [J]. Journal of International Oncology, 2025, 52(9): 566-575. |
| [2] | Liu Mei, Hu Yuchong, Li Fengtong, Chao Lemen, Liu Meng, Kang Linlin. Mechanism of action of SHCBP1 in malignant tumors and progress in clinical research [J]. Journal of International Oncology, 2025, 52(9): 583-586. |
| [3] | Che Gen, Wu Rihan, Zhu Tiantian, Dong Li. Mechanism of the cGAS-STING signaling pathway in non-small cell lung cancer and its targeted therapeutic strategies [J]. Journal of International Oncology, 2025, 52(9): 587-591. |
| [4] | Wu Xuehui, Li Song, Liu Lian. Clinical applications of TCR sequencing in cancer immunotherapy [J]. Journal of International Oncology, 2025, 52(8): 523-527. |
| [5] | Li Jinxin, Gu Fenfen. Efficacy of sintilimab combined with docetaxel in the treatment of cervical cancer and its impact on laboratory indicators [J]. Journal of International Oncology, 2025, 52(6): 366-373. |
| [6] | Sun Yujiao, Yu Meili, Ma Wenjing, Sun Longmei, Zhu Zhaofeng, Zheng Yuanyuan. Advances in the clinical application of neoadjuvant immunotherapy for resectable locally advanced esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2025, 52(5): 309-314. |
| [7] | Liu Haiyan, Zhang Chao. A predictive model for immunotherapy efficacy in non-small cell lung cancer constructed based on CT image-weighted radiomics score [J]. Journal of International Oncology, 2025, 52(4): 202-208. |
| [8] | Liu Qianyi, Dong Hongmin, Wang Wenling, Wang Gang, Chen Wanghua. Clinical efficacy and safety of radiotherapy combined with chemotherapy and immunotherapy for HER2-negative locally advanced or advanced gastric cancer [J]. Journal of International Oncology, 2025, 52(4): 209-216. |
| [9] | Zhou Xiaoyu, Pu Xuefeng, Long Shulin, Li Lu, He Wenying. Changes of T lymphocyte subsets and the relationship with postoperative lymph node metastasis in patients with stage Ⅰ and Ⅱ cervical cancer [J]. Journal of International Oncology, 2025, 52(4): 224-230. |
| [10] | Wen Yingmei, Xia Jinxiong, Wang Yuanyuan, Yao Yi. Impacts of radiotherapy on anti-tumor immunity:a comprehensive review from the fundamental to the clinical [J]. Journal of International Oncology, 2025, 52(4): 231-236. |
| [11] | Han Tao, Jia Peipei, Lu Jing. Predictive value of iRhom1,iRhom2 and TNF-α levels for the prognosis of patients with cervical cancer [J]. Journal of International Oncology, 2025, 52(3): 158-162. |
| [12] | Ouyang Surui, Sun Mengying, Tang Zhuang, Li Jin, He Jingdong. Research progress of intratumoral immune injection of drugs and drug delivery carriers [J]. Journal of International Oncology, 2025, 52(3): 169-175. |
| [13] | Wang Zhiying, Sheng Lijun. Research progress of peripheral blood biomarkers in immunotherapy of non-small cell lung cancer [J]. Journal of International Oncology, 2025, 52(3): 180-185. |
| [14] | Wang Xibo, Tian Baowen, Chen Shiqiao. Mechanism of Breg cell in tumor immune escape and related therapeutic targets [J]. Journal of International Oncology, 2025, 52(2): 107-112. |
| [15] | Ye Yongying, Zou Yan, Chen Tianming, Wu Weili. Research progress of clock gene Period family in head and neck squamous cell carcinoma [J]. Journal of International Oncology, 2025, 52(2): 113-118. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||