Journal of International Oncology ›› 2024, Vol. 51 ›› Issue (11): 678-683.doi: 10.3760/cma.j.cn371439-20231109-00115
• Original Articles • Previous Articles Next Articles
Zhu Bin, Wan Tao, Xu Hua, Jia Hao, Chen Shixin()
Received:
2023-11-09
Revised:
2024-07-25
Online:
2024-11-08
Published:
2024-12-26
Contact:
Chen Shixin
E-mail:593898016@qq.com
Zhu Bin, Wan Tao, Xu Hua, Jia Hao, Chen Shixin. Value analysis of the prediction model based on multimodal MRI characteristics for the differential diagnosis of benign and malignant BI-RADS 4 types of breast tumors[J]. Journal of International Oncology, 2024, 51(11): 678-683.
"
指标 | 恶性组(n=124) | 良性组(n=80) | t/χ2值 | P值 |
---|---|---|---|---|
年龄(岁) | 51.54±7.50 | 43.81±5.93 | 7.78 | <0.001 |
病变最大径(mm) | 17.19±3.37 | 17.02±3.60 | 0.34 | 0.732 |
肿块可触及 | 103(83.06) | 61(76.25) | 1.43 | 0.231 |
病灶形态不规则 | 48(38.71) | 25(31.25) | 1.18 | 0.278 |
病灶边缘 | ||||
光整 | 8(6.45) | 10(12.50) | ||
不规则 | 102(82.26) | 64(80.00) | 2.76 | 0.252 |
星芒状 | 14(11.29) | 6(7.50) | ||
BI-RADS类型 | ||||
4A | 22(17.74) | 17(21.25) | 0.39 | 0.534 |
4B~C | 102(82.26) | 63(78.75) | ||
内部强化类型 | ||||
均匀 | 7(5.65) | 14(17.50) | 14.50 | 0.002 |
不均匀 | 85(68.55) | 35(43.75) | ||
环形强化 | 20(16.13) | 18(22.50) | ||
低信号分隔 | 12(9.67) | 13(16.25) | ||
时间-强度曲线类型 | ||||
流入 | 22(17.74) | 16(20.00) | 2.54 | 0.281 |
平台 | 48(38.71) | 38(47.50) | ||
流出 | 54(43.55) | 26(32.50) | ||
表观弥散系数(×10-3 mm2/s) | 0.83±0.15 | 1.05±0.31 | -6.77 | <0.001 |
T1值(ms) | 1 250.81±137.13 | 1 372.87±140.14 | -6.15 | <0.001 |
T2值(ms) | 92.23±8.05 | 94.49±10.72 | -1.72 | 0.088 |
PD值(pu) | 69.79±10.47 | 72.82±13.95 | -1.77 | 0.079 |
R1 值(s-1) | 0.88±0.15 | 0.74±0.12 | 7.02 | <0.001 |
R2值(s-1) | 13.04±3.26 | 12.82±2.54 | 0.51 | 0.610 |
"
影响因素 | β值 | SE值 | Wald χ2值 | OR值 | 95%CI | P值 |
---|---|---|---|---|---|---|
年龄 | 0.15 | 0.04 | 14.15 | 1.16 | 1.07~1.25 | <0.001 |
内部强化类型 | ||||||
均匀 | Ref | |||||
不均匀 | 2.09 | 0.66 | 10.01 | 8.08 | 2.21~29.51 | 0.002 |
环形强化 | 1.54 | 1.00 | 2.38 | 4.66 | 0.66~32.99 | 0.122 |
低信号分隔 | 1.40 | 0.85 | 2.70 | 4.05 | 0.76~21.44 | 0.100 |
表观弥散系数 | -5.21 | 1.08 | 23.42 | 0.01 | 0.00~0.05 | <0.001 |
T1值 | -0.01 | 0.01 | 16.09 | 0.99 | 0.99~1.00 | <0.001 |
R1值 | 6.95 | 1.59 | 19.17 | 1 043.50 | 46.48~23 426.36 | <0.001 |
常量 | 0.05 | 3.01 | 0.01 | 1.05 | 0.986 |
[1] | 段帅, 郭晨明, 李慧芳, 等. 1990—2019年中国女性乳腺癌发病死亡趋势及年龄-时期-队列模型分析[J]. 国际肿瘤学杂志, 2022, 49(10): 586-591. DOI: 10.3760/cma.j.cn371439-20220726-00116. |
[2] | 宋德领, 张玉姣, 朱月香, 等. 动态对比增强MRI影像组学特征鉴别乳腺良恶性病变的价值[J]. 实用放射学杂志, 2021, 37(11): 1810-1813, 1846. DOI: 10.3969/j.issn.1002-1671.2021.11.015. |
[3] |
Zhou J, Zhang Y, Chang KT, et al. Diagnosis of benign and malignant breast lesions on DCE-MRI by using radiomics and deep learning with consideration of peritumor tissue[J]. J Magn Reson Imaging, 2020, 51(3): 798-809. DOI: 10.1002/jmri.26981.
pmid: 31675151 |
[4] |
Granzier RWY, Verbakel NMH, Ibrahim A, et al. MRI-based radiomics in breast cancer: feature robustness with respect to inter-observer segmentation variability[J]. Sci Rep, 2020, 10(1): 14163. DOI: 10.1038/s41598-020-70940-z.
pmid: 32843663 |
[5] | 徐兵河, 江泽飞, 胡夕春. 中国晚期乳腺癌临床诊疗专家共识2016[J]. 中华医学杂志, 2016, 96(22): 1719-1727. DOI: 10.3760/cma.j.issn.0376-2491.2016.22.002 |
[6] | 中国抗癌协会乳腺癌专业委员会. 中国抗癌协会乳腺癌诊治指南与规范(2021年版)[J]. 中国癌症杂志, 2021, 31(10): 954-1040. DOI: 10.19401/j.cnki.1007-3639.2021.10.013. |
[7] | Zhao YF, Chen Z, Zhang Y, et al. Diagnosis of breast cancer using radiomics models built based on dynamic contrast enhanced MRI combined with mammography[J]. Front Oncol, 2021, 11: 774248. DOI: 10.3389/fonc.2021.774248. |
[8] | 张书海, 王小雷, 朱芸, 等. 多模态影像组学在鉴别乳腺良恶性病变中的应用研究[J]. 临床放射学杂志, 2021, 40(11): 2098-2104. |
[9] | Huang Y, Wei L, Hu Y, et al. Multi-parametric MRI-based radiomics models for predicting molecular subtype and androgen receptor expression in breast cancer[J]. Front Oncol, 2021, 11: 706733. DOI: 10.3389/fonc.2021.706733. |
[10] | Daimiel Naranjo I, Gibbs P, Reiner JS, et al. Radiomics and machine learning with multiparametric breast MRI for improved diagnostic accuracy in breast cancer diagnosis[J]. Diagnostics (Basel), 2021, 11(6): 919. DOI: 10.3390/diagnostics11060919. |
[11] | Lin F, Wang Z, Zhang K, et al. Contrast-enhanced spectral mammography-based radiomics nomogram for identifying benign and malignant breast lesions of Sub-1 cm[J]. Front Oncol, 2020, 10: 573630. DOI: 10.3389/fonc.2020.573630. |
[12] | Chen HL, Zhou JQ, Chen Q, et al. Comparison of the sensitivity of mammography, ultrasound, magnetic resonance imaging and combinations of these imaging modalities for the detection of small (≤2 cm) breast cancer[J]. Medicine (Baltimore), 2021, 100(26): e26531. DOI: 10.1097/MD.0000000000026531. |
[13] | Niu S, Jiang W, Zhao N, et al. Intra- and peritumoral radiomics on assessment of breast cancer molecular subtypes based on mammography and MRI[J]. J Cancer Res Clin Oncol, 2022, 148(1): 97-106. DOI: 10.1007/s00432-021-03822-0. |
[14] | Gillies RJ, Schabath MB. Radiomics improves cancer screening and early detection[J]. Cancer Epidemiol Biomarkers Prev, 2020, 29(12): 2556-2567. DOI: 10.1158/1055-9965.EPI-20-0075. |
[15] |
Jiang M, Li CL, Luo XM, et al. An MRI-based radiomics approach to improve breast cancer histological grading[J]. Acad Radiol, 2023, 30(9): 1794-1804. DOI: 10.1016/j.acra.2022.12.014.
pmid: 36609032 |
[16] |
Li X, Jiang N, Zhang C, et al. Value of conventional magnetic resonance imaging texture analysis in the differential diagnosis of benign and borderline/malignant phyllodes tumors of the breast[J]. Cancer Imaging, 2021, 21(1): 29. DOI: 10.1186/s40644-021-00398-3.
pmid: 33712070 |
[17] |
Conti A, Duggento A, Indovina I, et al. Radiomics in breast cancer classification and prediction[J]. Semin Cancer Biol, 2021, 72: 238-250. DOI: 10.1016/j.semcancer.2020.04.002.
pmid: 32371013 |
[18] | Langman EL, Kuzmiak CM, Brader R, et al. Breast cancer in young women: imaging and clinical course[J]. Breast J, 2021, 27(8): 657-663. DOI: 10.1111/tbj.14261. |
[19] | 尤超, 彭卫军, 顾雅佳, 等. 乳腺X线摄影及MRI结合临床特征对乳腺高危病变诊断价值[J]. 中华放射学杂志, 2020, 54(3): 203-208. DOI: 10.3760/cma.j.issn.1005-1201.2020.03.006. |
[20] |
Tagliafico AS, Piana M, Schenone D, et al. Overview of radiomics in breast cancer diagnosis and prognostication[J]. Breast, 2020, 49: 74-80. DOI: 10.1016/j.breast.2019.10.018.
pmid: 31739125 |
[1] | Han Xiaoxu, Zhang Nan, Liu Shuai. Progress in the study of the pregnane X receptor in drug resistance in breast cancer [J]. Journal of International Oncology, 2024, 51(9): 590-594. |
[2] | Zhao Biao, Pu Qin, Yuan Meifang, Ma Lishuang, Li Han, Yang Yi, Sun Chaoxi. Dosimetric study of intensity-modulated radiotherapy and volumetric intensity modulated arc therapy based on the inner edge tangent field for radiotherapy after breast-conserving surgery of left-sided breast cancer [J]. Journal of International Oncology, 2024, 51(7): 441-447. |
[3] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[4] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[5] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[6] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[7] | Chen Boguang, Wang Sugui, Zhang Yongjie. Role of serum cholinesterase and inflammatory markers in the prognosis of stage ⅠA -ⅢA breast cancer [J]. Journal of International Oncology, 2024, 51(2): 73-82. |
[8] | Tao Jin, Kan Junnan, Yang Caixia, Liu Yan, Lyu Yijie, Wei Junhui, Li Xianglin. Progress of manganese-based nanomaterials in breast cancer diagnosis and treatment [J]. Journal of International Oncology, 2024, 51(10): 645-649. |
[9] | Gao Xinyu, Li Zhenjiang, Sun Hongfu, Han Dan, Zhao Qian, Liu Chengxin, Huang Wei. Clinical application of MR-guided radiotherapy based on MR-linac in esophageal cancer patients [J]. Journal of International Oncology, 2024, 51(1): 37-42. |
[10] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. |
[11] | Wang Jing, Xu Wenting. Value of NLR, CEA combined with coagulation indicators in the differential diagnosis of benign and malignant breast nodules with a diameter ≤ 1.0 cm [J]. Journal of International Oncology, 2023, 50(9): 520-526. |
[12] | Feng Chengtian, Huang Furong, Cao Shiyu, Wang Jianyu, Nanding Abiyasi, Jiang Yongdong, Zhu Juanying. Relationships between HER2 protein expression and imaging features in HER2 positive breast cancer patients [J]. Journal of International Oncology, 2023, 50(9): 527-531. |
[13] | Feng Dongxu, Wu Wei, Gao Pingfa, Wang Jun, Shi Lijuan, Chen Dawei, Li Wenbing, Zhang Meifeng. Effects of miR-451 on glycolysis and apoptosis of breast cancer cells by regulating Rho/ROCK1 pathway [J]. Journal of International Oncology, 2023, 50(8): 449-456. |
[14] | Pan Shulan, Liu Chang, He Ping. Effect of fritinib on angiogenesis, tumor growth and IRE1-ASK1-JNK pathway in triple negative breast cancer [J]. Journal of International Oncology, 2023, 50(8): 457-462. |
[15] | Wang Wende, Zeng De. Research progress on the mechanism of endocrine therapy resistance for breast cancer [J]. Journal of International Oncology, 2023, 50(6): 352-356. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||