Journal of International Oncology ›› 2024, Vol. 51 ›› Issue (10): 645-649.doi: 10.3760/cma.j.cn371439-20240429-00108
• Reviews • Previous Articles Next Articles
Tao Jin1, Kan Junnan1, Yang Caixia1, Liu Yan1, Lyu Yijie2, Wei Junhui1, Li Xianglin1()
Received:
2024-04-29
Revised:
2024-08-10
Online:
2024-10-08
Published:
2024-12-04
Contact:
Li Xianglin
E-mail:xlli@bzmc.edu.cn
Supported by:
Tao Jin, Kan Junnan, Yang Caixia, Liu Yan, Lyu Yijie, Wei Junhui, Li Xianglin. Progress of manganese-based nanomaterials in breast cancer diagnosis and treatment[J]. Journal of International Oncology, 2024, 51(10): 645-649.
[1] | 赵倩雯, 彭丹莉, 秦韬, 等. 1990—2019年全球肿瘤发病死亡分析[J]. 国际肿瘤学杂志, 2023, 50(7): 425-431. DOI: 10.3760/cma.j.cn371439-20230315-00082. |
[2] |
Sun Z, Wang Z, Wang T, et al. Biodegradable MnO-based nanoparticles with engineering surface for tumor therapy: simultaneous fenton-like ion delivery and immune activation[J]. ACS Nano, 2022, 16(8): 11862-11875. DOI: 10.1021/acsnano.2c00969.
pmid: 35925671 |
[3] | Jain P, Jangid AK, Pooja D, et al. Designing of manganese-based nanomaterials for pharmaceutical and biomedical applications[J]. J Mater Chem B, 2024, 12(3): 577-608. DOI: 10.1039/d3tb00779k. |
[4] |
Wekking D, Porcu M, De Silva P, et al. Breast MRI: clinical indications, recommendations, and future applications in breast cancer diagnosis[J]. Curr Oncol Rep, 2023, 25(4): 257-267. DOI: 10.1007/s11912-023-01372-x.
pmid: 36749493 |
[5] | Chen X, Teng S, Li J, et al. Gadolinium(Ⅲ)-chelated deformable mesoporous organosilica nanoparticles as magnetic resonance imaging contrast agent[J]. Adv Mater, 2023, 35(20): 2211578. DOI: 10.1002/adma.202211578. |
[6] | Daksh S, Kaul A, Deep S, et al. Current advancement in the development of manganese complexes as magnetic resonance imaging probes[J]. J Inorg Biochem, 2022, 237: 112018. DOI: 10.1016/j.jinorgbio.2022.112018. |
[7] |
Ouyang S, Chen C, Lin P, et al. Hydrogen-bonded organic frameworks chelated manganese for precise magnetic resonance imaging diagnosis of cancers[J]. Nano Lett, 2023, 23(18): 8628-8636. DOI: 10.1021/acs.nanolett.3c02466.
pmid: 37694968 |
[8] | Carniato F, Ricci M, Tei L, et al. Novel nanogels loaded with Mn(Ⅱ)chelates as effective and biologically stable MRI probes[J]. Small, 2023, 19(42): 2302868. DOI: 10.1002/smll.202302868. |
[9] |
Liu Y, Bhattarai P, Dai Z, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer[J]. Chem Soc Rev, 2019, 48(7): 2053-2108. DOI: 10.1039/c8cs00618k.
pmid: 30259015 |
[10] | Yu Y, Feng T, Qiu H, et al. Simultaneous photoacoustic and ultrasound imaging: a review[J]. Ultrasonics, 2024, 139: 107277. DOI: 10.1016/j.ultras.2024.107277. |
[11] |
Neuschler EI, Butler R, Young CA, et al. A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists[J]. Radiology, 2018, 287(2): 398-412. DOI: 10.1148/radiol.2017172228.
pmid: 29178816 |
[12] | Teng L, Han X, Liu Y, et al. Smart nanozyme platform with activity-correlated ratiometric molecular imaging for predicting therapeutic effects[J]. Angew Chem Int Ed Engl, 2021, 133(50): 26346-26354. DOI: 10.1002/anie.202110427. |
[13] |
Tang Q, Cheng Z, Yang N, et al. Hydrangea-structured tumor microenvironment responsive degradable nanoplatform for hypoxic tumor multimodal imaging and therapy[J]. Biomaterials, 2019, 205: 1-10. DOI: 10.1016/j.biomaterials.2019.03.005.
pmid: 30889497 |
[14] | Lv Y, Kan J, Luo M, et al. Multifunctional nanosnowflakes for T1-T2 double-contrast enhanced MRI and PAI guided oxygen self-supplementing effective anti-tumor therapy[J]. Int J Nanomedicine, 2022, 17: 4619-4638. DOI: 10.2147/IJN.S379526. |
[15] |
Vogel A, Meyer T, Sapisochin G, et al. Hepatocellular carcinoma[J]. Lancet, 2022, 400(10360): 1345-1362. DOI: 10.1016/S0140-6736(22)01200-4.
pmid: 36084663 |
[16] | Weber WA, Barthel H, Bengel F, et al. What is theranostics?[J]. J Nucl Med, 2023, 64(5): 669-670. DOI: 10.2967/jnumed.123.265670. |
[17] | Pan YB, Xu CX, Deng HZ, et al. Localized NIR-Ⅱ laser mediated chemodynamic therapy of glioblastoma[J]. Nano Today, 2022, 43: 101435. DOI: 10.1016/j.nantod.2022.101435. |
[18] | Zhang L, Yang Z, He W, et al. One-pot synthesis of a self-reinforcing cascade bioreactor for combined photodynamic/chemodynamic/starvation therapy[J]. J Colloid Interface Sci, 2021, 599: 543-555. DOI: 10.1016/j.jcis.2021.03.173. |
[19] | Xu X, Zhang R, Yang X, et al. A honeycomb-like bismuth/manganese oxide nanoparticle with mutual reinforcement of internal and external response for triple-negative breast cancer targeted therapy[J]. Adv Healthc Mater, 2021, 10(18): 2100518. DOI: 10.1002/adhm.202100518. |
[20] | Adams S, Gatti-Mays ME, Kalinsky K, et al. Current landscape of immunotherapy in breast cancer: a review[J]. JAMA Oncol, 2019, 5(8): 1205-1214. DOI: 10.1001/jamaoncol.2018.7147. |
[21] | Lv MZ, Chen MX, Zhang R, et al. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy[J]. Cell Res, 2020, 30(11): 966-979. DOI: 10.1038/s41422-020-00395-4. |
[22] | Zhong H, Chen G, Li T, et al. Nanodrug augmenting antitumor immunity for enhanced TNBC therapy via pyroptosis and cGAS-STING activation[J]. Nano Lett, 2023, 23(11): 5083-5091. DOI: 10.1021/acs.nanolett.3c01008. |
[23] | Rashid NS, Grible JM, Clevenger CV, et al. Breast cancer liver metastasis: current and future treatment approaches[J]. Clin Exp Metastasis, 2021, 38(3): 263-277. DOI: 10.1007/s10585-021-10080-4. |
[24] |
Zhong Y, Li T, Zhu Y, et al. Targeting proinflammatory molecules using multifunctional MnO nanoparticles to inhibit breast cancer recurrence and metastasis[J]. ACS Nano, 2022, 16(12): 20430-20444. DOI: 10.1021/acsnano.2c06713.
pmid: 36382718 |
[25] | Wang SB, Zhang C, Ye JJ, et al. Near-infrared light responsive nanoreactor for simultaneous tumor photothermal therapy and carbon monoxide-mediated anti-inflammation[J]. ACS Cent Sci, 2020, 6(4): 555-565. DOI: 10.1021/acscentsci.9b01342. |
[26] | Peng J, Dong M, Ran B, et al. "One-for-All"-type, biodegradable prussian blue/manganese dioxide hybrid nanocrystal for trimodal imaging-guided photothermal therapy and oxygen regulation of breast cancer[J]. ACS Appl Mater Interfaces, 2017, 9(16): 13875-13886. DOI: 10.1021/acsami.7b01365. |
[27] |
Xie W, Guo Z, Gao Q, et al. Manganese-doped layered double hydroxide: a biodegradable theranostic nanoplatform with tumor microenvironment response for magnetic resonance imaging-guided photothermal therapy[J]. ACS Appl Bio Mater, 2020, 3(9): 5845-5855. DOI: 10.1021/acsabm.0c00564.
pmid: 35021812 |
[28] | Niu B, Liao K, Zhou Y, et al. Application of glutathione depletion in cancer therapy: enhanced ROS-based therapy, ferroptosis, and chemotherapy[J]. Biomaterials, 2021, 277: 121110. DOI: 10.1016/j.biomaterials.2021.121110. |
[29] | Yuan P, Deng FA, Liu YB, et al. Mitochondria targeted O2 economizer to alleviate tumor hypoxia for enhanced photodynamic therapy[J]. Adv Healthc Mater, 2021, 10(12): 2100198. DOI: 10.1002/adhm.202100198. |
[30] | Zhou X, Xu X, Hu Q, et al. Novel manganese and polyester dendrimer-based theranostic nanoparticles for MRI and breast cancer therapy[J]. J Mater Chem B, 2023, 11(3): 648-656. DOI: 10.1039/d2tb01855a. |
[31] | Li W, Li R, Ye Q, et al. Mn3O4 nanoshell coated metal-organic frameworks with microenvironment-driven O2 production and GSH exhaustion ability for enhanced chemodynamic and photodynamic cancer therapies[J]. Adv Healthc Mater, 2023, 12(15): 2202280. DOI: 10.1002/adhm.202202280. |
[32] |
Beckers C, Pruschy M, Vetrugno I. Tumor hypoxia and radiotherapy: a major driver of resistance even for novel radiotherapy modalities[J]. Semin Cancer Biol, 2024, 98: 19-30. DOI: 10.1016/j.semcancer.2023.11.006.
pmid: 38040401 |
[33] | He Z, Yan H, Zeng W, et al. Tumor microenvironment-responsive multifunctional nanoplatform based on MnFe2O4-PEG for enhanced magnetic resonance imaging-guided hypoxic cancer radiotherapy[J]. J Mater Chem B, 2021, 9(6): 1625-1637. DOI: 10.1039/d0tb02631j. |
[34] | Hu H, Zheng S, He C, et al. Radiotherapy-sensitized cancer immunotherapy via cGAS-STING immune pathway by activatable nanocascade reaction[J]. J Nanobiotechnology, 2024, 22(1): 234. DOI: 10.1186/s12951-024-02502-8. |
[35] |
Xiong Y, Xiao C, Li Z, et al. Engineering nanomedicine for glutathione depletion-augmented cancer therapy[J]. Chem Soc Rev, 2021, 50(10): 6013-6041. DOI: 10.1039/d0cs00718h.
pmid: 34027953 |
[36] | Zhang H, Li M, Zhu X, et al. Artemisinin co-delivery system based on manganese oxide for precise diagnosis and treatment of breast cancer[J]. Nanotechnology, 2021, 32(32): 325101. DOI: 10.1088/1361-6528/abfc6f. |
[37] | Jain P, Patel K, Jangid AK, et al. Biotinylated Mn3O4 nanocuboids for targeted delivery of gemcitabine hydrochloride to breast cancer and MRI applications[J]. Int J Pharm, 2021, 606: 120895. DOI: 10.1016/j.ijpharm.2021.120895. |
[1] | Han Xiaoxu, Zhang Nan, Liu Shuai. Progress in the study of the pregnane X receptor in drug resistance in breast cancer [J]. Journal of International Oncology, 2024, 51(9): 590-594. |
[2] | Zhao Biao, Pu Qin, Yuan Meifang, Ma Lishuang, Li Han, Yang Yi, Sun Chaoxi. Dosimetric study of intensity-modulated radiotherapy and volumetric intensity modulated arc therapy based on the inner edge tangent field for radiotherapy after breast-conserving surgery of left-sided breast cancer [J]. Journal of International Oncology, 2024, 51(7): 441-447. |
[3] | Han Yi, Zhang Tongmei, Qi Fei, Zhang Yong. Advances in clinical molecular diagnosis and treatment of pulmonary large cell neuroendocrine carcinoma [J]. Journal of International Oncology, 2024, 51(7): 468-473. |
[4] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[5] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[6] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[7] | Wang Zihao, Wang Yu, Yang Xin, He Yi, Mo Xingkui, Yuan Tao. Research progress on the molecular mechanism and related treatments of ferroptosis in osteosarcoma [J]. Journal of International Oncology, 2024, 51(4): 239-244. |
[8] | Chen Boguang, Wang Sugui, Zhang Yongjie. Role of serum cholinesterase and inflammatory markers in the prognosis of stage ⅠA -ⅢA breast cancer [J]. Journal of International Oncology, 2024, 51(2): 73-82. |
[9] | Gao Xinyu, Li Zhenjiang, Sun Hongfu, Han Dan, Zhao Qian, Liu Chengxin, Huang Wei. Clinical application of MR-guided radiotherapy based on MR-linac in esophageal cancer patients [J]. Journal of International Oncology, 2024, 51(1): 37-42. |
[10] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. |
[11] | Wang Jing, Xu Wenting. Value of NLR, CEA combined with coagulation indicators in the differential diagnosis of benign and malignant breast nodules with a diameter ≤ 1.0 cm [J]. Journal of International Oncology, 2023, 50(9): 520-526. |
[12] | Feng Chengtian, Huang Furong, Cao Shiyu, Wang Jianyu, Nanding Abiyasi, Jiang Yongdong, Zhu Juanying. Relationships between HER2 protein expression and imaging features in HER2 positive breast cancer patients [J]. Journal of International Oncology, 2023, 50(9): 527-531. |
[13] | Feng Dongxu, Wu Wei, Gao Pingfa, Wang Jun, Shi Lijuan, Chen Dawei, Li Wenbing, Zhang Meifeng. Effects of miR-451 on glycolysis and apoptosis of breast cancer cells by regulating Rho/ROCK1 pathway [J]. Journal of International Oncology, 2023, 50(8): 449-456. |
[14] | Pan Shulan, Liu Chang, He Ping. Effect of fritinib on angiogenesis, tumor growth and IRE1-ASK1-JNK pathway in triple negative breast cancer [J]. Journal of International Oncology, 2023, 50(8): 457-462. |
[15] | Wang Wende, Zeng De. Research progress on the mechanism of endocrine therapy resistance for breast cancer [J]. Journal of International Oncology, 2023, 50(6): 352-356. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||