Journal of International Oncology ›› 2021, Vol. 48 ›› Issue (5): 296-301.doi: 10.3760/cma.j.cn371439-20210115-00057
• Reviews • Previous Articles Next Articles
Wang Hui1, Xia Rong1, Wei Qingwen2, Wan Yixin1()
Received:
2021-01-15
Revised:
2021-04-01
Online:
2021-05-08
Published:
2021-06-09
Contact:
Wan Yixin
E-mail:wanyx1964@163.com
Wang Hui, Xia Rong, Wei Qingwen, Wan Yixin. Risk factors and predictive biomarkers of immune checkpoint inhibitor-associated pneumonia in non-small cell lung cancer[J]. Journal of International Oncology, 2021, 48(5): 296-301.
[1] |
Hellmann MD, Rizvi NA, Goldman JW, et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study[J]. Lancet Oncol, 2017,18(1):31-41. DOI: 10.1016/s1470-2045(16)30624-6.
doi: 10.1016/S1470-2045(16)30624-6 |
[2] |
Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer[J]. N Engl J Med, 2015,373(2):123-135. DOI: 10.1056/NEJMoa1504627.
doi: 10.1056/NEJMoa1504627 |
[3] |
Suresh K, Psoter KJ, Voong KR, et al. Impact of checkpoint inhibitor pneumonitis on survival in NSCLC patients receiving immune checkpoint immunotherapy[J]. Thorac Oncol, 2019,14(3):494-502. DOI: 10.1016/j.jtho.2018.11.016.
doi: 10.1016/j.jtho.2018.11.016 |
[4] |
Ma K, Lu Y, Jiang S, et al. The relative risk and incidence of immune checkpoint inhibitors related pneumonitis in patients with advanced cancer: a meta-analysis[J]. Front Pharmacol, 2018,9:1430. DOI: 10.3389/fphar.2018.01430.
doi: 10.3389/fphar.2018.01430 |
[5] |
Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial[J]. Lancet, 2017,389(10066):255-265. DOI: 10.1016/s0140-6736(16)32517-x.
doi: S0140-6736(16)32517-X pmid: 27979383 |
[6] |
Suresh K, Voong KR, Shankar B, et al. Pneumonitis in non-small cell lung cancer patients receiving immune checkpoint immunotherapy: incidence and risk factors[J]. J Thorac Oncol, 2018,13(12):1930-1939. DOI: 10.1016/j.jtho.2018.08.2035.
doi: 10.1016/j.jtho.2018.08.2035 |
[7] |
Cho JY, Kim J, Lee JS, et al. Characteristics, incidence, and risk factors of immune checkpoint inhibitor-related pneumonitis in patients with non-small cell lung cancer[J]. Lung Cancer, 2018,125:150-156. DOI: 10.1016/j.lungcan.2018.09.015.
doi: 10.1016/j.lungcan.2018.09.015 |
[8] |
Yamaguchi T, Shimizu J, Hasegawa T, et al. Pre-existing pulmonary fibrosis is a risk factor for anti-PD-1-related pneumonitis in patients with non-small cell lung cancer: a retrospective analysis[J]. Lung Cancer, 2018,125:212-217. DOI: 10.1016/j.lungcan.2018.10.001.
doi: S0169-5002(18)30585-3 pmid: 30429022 |
[9] |
Suzuki Y, Karayama M, Uto T, et al. Assessment of immune-related interstitial lung disease in patients with NSCLC treated with immune checkpoint inhibitors: a multicenter prospective study[J]. J Thorac Oncol, 2020,15(8):1317-1327. DOI: 10.1016/j.jtho.2020.04.002.
doi: S1556-0864(20)30297-5 pmid: 32289515 |
[10] |
Naqash AR, Ricciuti B, Owen DH, et al. Outcomes associated with immune-related adverse events in metastatic non-small cell lung cancer treated with nivolumab: a pooled exploratory analysis from a global cohort[J]. Cancer Immunol Immunother, 2020,69(7):1177-1187. DOI: 10.1007/s00262-020-02536-5.
doi: 10.1007/s00262-020-02536-5 |
[11] |
Sun X, Roudi R, Dai T, et al. Immune-related adverse events associated with programmed cell death protein-1 and programmed cell death ligand 1 inhibitors for non-small cell lung cancer: a PRISMA systematic review and meta-analysis[J]. BMC Cancer, 2019,19(1):558. DOI: 10.1186/s12885-019-5701-6.
doi: 10.1186/s12885-019-5701-6 |
[12] |
Li M, Spakowicz D, Zhao S, et al. Brief report: inhaled corticosteroid use and the risk of checkpoint inhibitor pneumonitis in patients with advanced cancer[J]. Cancer Immunol Immunother, 2020,69(11):2403-2408. DOI: 10.1007/s00262-020-02674-w.
doi: 10.1007/s00262-020-02674-w |
[13] | Inoue H, Okamoto I. Immune checkpoint inhibitors for the treatment of unresectable stage Ⅲ non-small cell lung cancer: emerging me-chanisms and perspectives[J]. Lung Cancer (Auckl), 2019,10:161-170. DOI: 10.2147/lctt.S184380. |
[14] |
Kato T, Masuda N, Nakanishi Y, et al. Nivolumab-induced interstitial lung disease analysis of two phase Ⅱ studies patients with recurrent or advanced non-small-cell lung cancer[J]. Lung Cancer, 2017,104:111-118. DOI: 10.1016/j.lungcan.2016.12.016.
doi: 10.1016/j.lungcan.2016.12.016 |
[15] | Sun Z, Wang S, Du H, et al. Immunotherapy-induced pneumonitis in non-small cell lung cancer patients: current concern in treatment with immune-check-point inhibitors[J]. Invest New Drugs, 2021, In press. DOI: 10.1007/s10637-020-01051-9. |
[16] |
Sul J, Blumenthal GM, Jiang X, et al. FDA approval summary: pembrolizumab for the treatment of patients with metastatic non-small cell lung cancer whose tumors express programmed death-ligand 1[J]. Oncologist, 2016,21(5):643-650. DOI: 10.1634/theoncologist.2015-0498.
doi: 10.1634/theoncologist.2015-0498 |
[17] |
Isono T, Kagiyama N, Takano K, et al. Outcome and risk factor of immune-related adverse events and pneumonitis in patients with advanced or postoperative recurrent non-small cell lung cancer treated with immune checkpoint inhibitors[J]. Thorac Cancer, 2020,12(2):153-164. DOI: 10.1111/1759-7714.13736.
doi: 10.1111/tca.v12.2 |
[18] |
Kanai O, Kim YH, Demura Y, et al. Efficacy and safety of ni-volumab in non-small cell lung cancer with preexisting interstitial lung disease[J]. Thorac Cancer, 2018,9(7):847-855. DOI: 10.1111/1759-7714.12759.
doi: 10.1111/tca.2018.9.issue-7 |
[19] |
Tone M, Izumo T, Awano N, et al. High mortality and poor treatment efficacy of immune checkpoint inhibitors in patients with severe grade checkpoint inhibitor pneumonitis in non-small cell lung cancer[J]. Thorac Cancer, 2019,10(10):2006-2012. DOI: 10.1111/1759-7714.13187.
doi: 10.1111/tca.v10.10 |
[20] |
Moda M, Saito H, Kato T, et al. Tumor invasion in the central airway is a risk factor for early-onset checkpoint inhibitor pneumonitis in patients with non-small cell lung cancer[J]. Thorac Cancer, 2020,11(12):3576-3584. DOI: 10.1111/1759-7714.13703.
doi: 10.1111/tca.v11.12 |
[21] |
Khunger M, Rakshit S, Pasupuleti V, et al. Incidence of pneumonitis with use of programmed death 1 and programmed death-ligand 1 inhibitors in non-small cell lung cancer: a systematic review and meta-analysis of trials[J]. Chest, 2017,152(2):271-281. DOI: 10.1016/j.chest.2017.04.177.
doi: S0012-3692(17)30882-6 pmid: 28499515 |
[22] |
Shaverdian N, Lisberg AE, Bornazyan K, et al. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial[J]. Lancet Oncol, 2017,18(7):895-903. DOI: 10.1016/s1470-2045(17)30380-7.
doi: 10.1016/S1470-2045(17)30380-7 |
[23] |
Voong KR, Hazell SZ, Fu W, et al. Relationship between prior radio-therapy and checkpoint-inhibitor pneumonitis in patients with advanced non-small-cell lung cancer[J]. Clin Lung Cancer, 2019,20(4):e470-e479. DOI: 10.1016/j.cllc.2019.02.018.
doi: 10.1016/j.cllc.2019.02.018 |
[24] | 符伶俐, 李萍, 张芮, 等. 胸部肿瘤患者辐射性肺炎的发生和预测因素[J]. 国际肿瘤学杂志, 2020,47(2):107-111. DOI: 10.3760/cma.j.issn.1673-422X.2020.02.009. |
[25] |
Song P, Zhang D, Cui X, et al. Meta-analysis of immune-related adverse events of immune checkpoint inhibitor therapy in cancer patients[J]. Thorac Cancer, 2020,11(9):2406-2430. DOI: 10.1111/1759-7714.13541.
doi: 10.1111/tca.v11.9 |
[26] |
Pillai RN, Behera M, Owonikoko TK, et al. Comparison of the toxicity profile of PD-1 versus PD-L1 inhibitors in non-small cell lung cancer: a systematic analysis of the literature[J]. Cancer, 2018,124(2):271-277. DOI: 10.1002/cncr.31043.
doi: 10.1002/cncr.31043 pmid: 28960263 |
[27] |
Peng TR, Tsai FP, Wu TW. Indirect comparison between pembroli-zumab and nivolumab for the treatment of non-small cell lung cancer: a meta-analysis of randomized clinical trials[J]. Int Immunopharmacol, 2017,49:85-94. DOI: 10.1016/j.intimp.2017.05.019.
doi: 10.1016/j.intimp.2017.05.019 |
[28] |
Passiglia F, Galvano A, Rizzo S, et al. Looking for the best im-mune-checkpoint inhibitor in pre-treated NSCLC patients: an indirect com-parison between nivolumab, pembrolizumab and atezolizu-mab[J]. Int J Cancer, 2018,142(6):1277-1284. DOI: 10.1002/ijc.31136.
doi: 10.1002/ijc.v142.6 |
[29] |
Garassino MC, Cho BC, Kim JH, et al. Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): an open-label, single-arm, phase 2 study[J]. Lancet Oncol, 2018,19(4):521-536. DOI: 10.1016/s1470-2045(18)30144-x.
doi: 10.1016/S1470-2045(18)30144-X |
[30] |
Gulley JL, Rajan A, Spigel DR, et al. Avelumab for patients with previously treated metastatic or recurrent non-small-cell lung cancer (JAVELIN Solid Tumor): dose-expansion cohort of a multicentre, open-label, phase 1b trial[J]. Lancet Oncol, 2017,18(5):599-610. DOI: 10.1016/s1470-2045(17)30240-1.
doi: 10.1016/S1470-2045(17)30240-1 |
[31] |
Barlesi F, Vansteenkiste J, Spigel D, et al. Avelumab versus docetaxel in patients with platinum-treated advanced non-small-cell lung cancer (JAVELIN Lung 200): an open-label, randomised, phase 3 study[J]. Lancet Oncol, 2018,19(11):1468-1479. DOI: 10.1016/s1470-2045(18)30673-9.
doi: 10.1016/S1470-2045(18)30673-9 |
[32] |
Hellmann MD, Ciuleanu TE, Pluzanski A, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden[J]. N Engl J Med, 2018,378(22):2093-2104. DOI: 10.1056/NEJMoa1801946.
doi: 10.1056/NEJMoa1801946 |
[33] |
Su Q, Zhu EC, Wu JB, et al. Risk of pneumonitis and pneumonia associated with immune checkpoint inhibitors for solid tumors: a systematic review and meta-analysis[J]. Front Immunol, 2019,10:108. DOI: 10.3389/fimmu.2019.00108.
doi: 10.3389/fimmu.2019.00108 |
[34] |
Antonia SJ, Villegas A, Daniel D, et al. Overall survival with dur-valumab after chemoradiotherapy in stage Ⅲ NSCLC[J]. N Engl J Med, 2018,379(24):2342-2350. DOI: 10.1056/NEJMoa1809697.
doi: 10.1056/NEJMoa1809697 |
[35] | 陈康, 孙步彤. PD-1/PD-L1抑制剂在晚期肿瘤患者中的相关肺炎发生率和发生风险:一项荟萃分析[J]. 中国肺癌杂志, 2020,23(11):927-940. DOI: 10.3779/j.issn.1009-3419.2020.103.14. |
[36] |
Lisberg A, Cummings A, Goldman JW, et al. A phase Ⅱ study of pembrolizumab in EGFR-mutant, PD-L1+, tyrosine kinase inhibitor naïve patients with advanced NSCLC[J]. J Thorac Oncol, 2018,13(8):1138-1145. DOI: 10.1016/j.jtho.2018.03.035.
doi: S1556-0864(18)30602-6 pmid: 29874546 |
[37] |
Oshima Y, Tanimoto T, Yuji K, et al. EGFR-TKI-associated interstitial pneumonitis in nivolumab-treated patients with non-small cell lung cancer[J]. JAMA Oncol, 2018,4(8):1112-1115. DOI: 10.1001/jamaoncol.2017.4526.
doi: 10.1001/jamaoncol.2017.4526 pmid: 29327061 |
[38] |
Oxnard GR, Yang JC, Yu H, et al. TATTON: a multi-arm, phase Ⅰb trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in EGFR-mutant lung cancer[J]. Ann Oncol, 2020,31(4):507-516. DOI: 10.1016/j.annonc.2020.01.013.
doi: 10.1016/j.annonc.2020.01.013 |
[39] | Ahn MJ, Yang J, Yu H, et al. 136O: Osimertinib combined with dur-valumab in EGFR-mutant non-small cell lung cancer: results from the TATTON phase Ⅰb trial[J]. J Thorac Oncol, 2016,11(4):s115 DOI: 10.1016/s1556-0864(16)30246-5. |
[40] | Haanen J, Carbonnel F, Robert C, et al. Management of toxicities from immunotherapy: ESMO clinical practice guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2017, 28(suppl_4): iv119-iv142. DOI: 10.1093/annonc/mdx225. |
[41] | mBrahmer JR, Lacchetti C, Schneider BJ, et al. Management of im-mune-related adverse events in patients treated with immune checkpoint inhibitor therapy: american society of clinical oncology clinical practice guideline[J]. J Oncol Pract, 2018,36(17):1714-1768. DOI: 10.1200/jco.2017.77.6385. |
[42] |
Arbour KC, Mezquita L, Long N, et al. Impact of baseline steroids on efficacy of programmed cell death-1 and programmed death-ligand 1 blockade in patients with non-small-cell lung cancer[J]. J Clin Oncol, 2018,36(28):2872-2878. DOI: 10.1200/jco.2018.79.0006.
doi: 10.1200/JCO.2018.79.0006 |
[43] |
Utsumi H, Araya J, Okuda K, et al. Successful treatment of steroid-refractory immune checkpoint inhibitor-related pneumonitis with triple combination therapy: a case report[J]. Cancer Immunol Immunother, 2020,69(10):2033-2039. DOI: 10.1007/s00262-020-02600-0.
doi: 10.1007/s00262-020-02600-0 |
[44] |
Martins F, Sykiotis GP, Maillard M, et al. New therapeutic perspec-tives to manage refractory immune checkpoint-related toxicities[J]. Lancet Oncol, 2019,20(1):e54-e64. DOI: 10.1016/s1470-2045(18)30828-3.
doi: 10.1016/S1470-2045(18)30828-3 |
[45] |
Frye BC, Meiss F, Von Bubnoff D, et al. Vasoactive intestinal peptide in checkpoint inhibitor-induced pneumonitis[J]. N Engl J Med, 2020,382(26):2573-2574. DOI: 10.1056/NEJMc2000343.
doi: 10.1056/NEJMc2000343 |
[46] | Sehgal S, Velcheti V, Mukhopadhyay S, et al. Focal lung infiltrate complicating PD-1 inhibitor use: a new pattern of drug-associated lung toxicity?[J]. Respir Med Case Rep, 2016,19:118-120. DOI: 10.1016/j.rmcr.2016.09.001. |
[47] |
Suresh K, Naidoo J, Zhong Q, et al. The alveolar immune cell land-scape is dysregulated in checkpoint inhibitor pneumonitis[J]. J Clin Invest, 2019,129(10):4305-4315. DOI: 10.1172/jci128654.
doi: 10.1172/JCI128654 |
[48] |
Bagley SJ, Kothari S, Aggarwal C, et al. Pretreatment neutrophil-to-lymphocyte ratio as a marker of outcomes in nivolumab-treated patients with advanced non-small-cell lung cancer[J]. Lung Cancer, 2017,106:1-7. DOI: 10.1016/j.lungcan.2017.01.013.
doi: 10.1016/j.lungcan.2017.01.013 |
[49] |
Owen DH, Wei L, Bertino EM, et al. Incidence, risk factors, and effect on survival of immune-related adverse events in patients with non-small-cell lung cancer[J]. Clin Lung Cancer, 2018,19(6):e893-e900. DOI: 10.1016/j.cllc.2018.08.008.
doi: 10.1016/j.cllc.2018.08.008 |
[50] | Chu X, Zhao J, Zhou J, et al. Association of baseline peripheral-blood eosinophil count with immune checkpoint inhibitor-related pneumonitis and clinical outcomes in patients with non-small cell lung cancer receiving immune checkpoint inhibitors[J]. Lung Can-cer, 2020,150:76-82. DOI: 10.1016/j.lungcan.2020.08.015. |
[51] | Carretero R, Sektioglu IM, Garbi N, et al. Corrigendum: eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8(+) T cells[J]. Nat Immunol, 2016,17(2):214. DOI: 10.1038/ni0216-214b. |
[52] |
Fukihara J, Sakamoto K, Koyama J, et al. Prognostic impact and risk factors of immune-related pneumonitis in patients with non-small-cell lung cancer who received programmed death 1 inhibitors[J]. Clin Lung Cancer, 2019, 20(6): 442-450.e4. DOI: 10.1016/j.cllc.2019.07.006.
doi: S1525-7304(19)30210-4 pmid: 31446020 |
[53] | Zeng J, Rengan R, Santana-Davila R, et al. Early assessment of liquid biomarkers to predict pneumonitis after chemoradiation in patients with locally advanced non-small cell lung cancer (LA-NSCLC)[G]. AACR, Philadelphia, USA, 2020. |
[54] |
Yoshida K, Morishima Y, Shiozawa T, et al. Serum soluble inter-leukin-2 receptor as a possible biomarker for the early detection and follow-up of nivolumab-induced pneumonitis[J]. J Thorac Oncol, 2019,14(5):e90-e91. DOI: 10.1016/j.jtho.2018.12.028.
doi: 10.1016/j.jtho.2018.12.028 |
[55] |
Wang YN, Lou DF, Li DY, et al. Elevated levels of IL-17A and IL-35 in plasma and bronchoalveolar lavage fluid are associated with checkpoint inhibitor pneumonitis in patients with non-small cell lung cancer[J]. Oncol Lett, 2020,20(1):611-622. DOI: 10.3892/ol.2020.11618.
doi: 10.3892/ol.2020.11618 pmid: 32565986 |
[1] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[2] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[3] | Qian Xiaotao, Shi Ziyi, Hu Ge. A real-world clinical study of immunocheckpoint inhibitor maintenance therapy after radical radiotherapy and chemotherapy in stage Ⅲ-ⅣA esophageal squamous cell carcinoma [J]. Journal of International Oncology, 2024, 51(3): 151-156. |
[4] | Xie Shuping, Sun Yahong, Wang Chao. Prediction of efficacy of early-stage tumor markers combined with NLR and PLR for immunotherapy in gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 157-165. |
[5] | Liu Yulan, Jing Haiyan, Sun Jing, Song Wei, Sha Dan. Advances in predicting efficacy and prognostic markers of immunotherapy for gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 175-180. |
[6] | Zhao Xin, Fan Xuewu, Tian Long, Hu Yimin. Application and evaluation study of 3D ultrasound in image guided radiotherapy for prostate cancer [J]. Journal of International Oncology, 2024, 51(1): 43-49. |
[7] | Chen Xinyi, Weng Yiming, Wei Jiayan, Wang Jinsong, Peng Min. Advances in immune checkpoint inhibitors in the treatment of recurrent or metastatic head and neck squamous cell carcinoma [J]. Journal of International Oncology, 2023, 50(9): 553-557. |
[8] | Deng Juanjun, Zhao Dayong, Li Miao. Adverse reactions and risk factors of immune checkpoint inhibitors in the treatment of non-small cell lung cancer [J]. Journal of International Oncology, 2023, 50(9): 564-568. |
[9] | Zhang Lu, Jiang Hua, Lin Zhou, Ma Chenying, Xu Xiaoting, Wang Lili, Zhou Juying. Analysis of curative effect and prognosis of immune checkpoint inhibitor in the treatment of recurrent and metastatic cervical cancer [J]. Journal of International Oncology, 2023, 50(8): 475-483. |
[10] | Guo Ciliang, Jiang Chunping, Wu Junhua. Gut microbiome and tumor immunotherapy [J]. Journal of International Oncology, 2023, 50(7): 432-436. |
[11] | Gu Anqin, Long Jinhua, Jin Feng. Clinical research progress of immunotherapy for nasopharyngeal carcinoma [J]. Journal of International Oncology, 2023, 50(5): 299-303. |
[12] | Yang Lirong, Wang Yufeng. Construction of machine learning models for predicting the risk of postoperative distant metastasis recurrence in serous ovarian cancer [J]. Journal of International Oncology, 2023, 50(4): 220-226. |
[13] | Wang Yaqian, Du Yiwei, Wang Xing, Jia Junmei. Prognostic predictors of immunotherapy in patients with small cell lung cancer [J]. Journal of International Oncology, 2023, 50(3): 179-182. |
[14] | Li Lixi, Zhang Di, Luo Yang, Ma Fei. Clinical application of PARP inhibitors in breast cancer [J]. Journal of International Oncology, 2023, 50(2): 91-96. |
[15] | Jiao Panpan, Xue Lijuan, Zhan Juan. Risk factors and predictors of immune-related adverse events induced by immune checkpoint inhibitors [J]. Journal of International Oncology, 2023, 50(12): 739-744. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||