Journal of International Oncology ›› 2021, Vol. 48 ›› Issue (2): 109-112.doi: 10.3760/cma.j.cn371439-20200629-00021
• Reviews • Previous Articles Next Articles
Received:
2020-06-29
Revised:
2020-07-11
Online:
2021-02-08
Published:
2021-03-11
Contact:
Ma Fei
E-mail:drmafei@126.com
Supported by:
Li Lixi, Ma Fei. Blood biomarkers for breast cancer screening and early diagnosis[J]. Journal of International Oncology, 2021, 48(2): 109-112.
[1] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018,68(6):394-424. DOI: 10.3322/caac.21492.
doi: 10.3322/caac.21492 pmid: 30207593 |
[2] |
Li X, Xu Y, Zhang L. Serum CA153 as biomarker for cancer and noncancer diseases[J]. Prog Mol Biol Transl Sci, 2019,162:265-276. DOI: 10.1016/bs.pmbts.2019.01.005.
doi: 10.1016/bs.pmbts.2019.01.005 pmid: 30905456 |
[3] |
Rebbeck TR, Mitra N, Wan F, et al. Association of type and location of brca1 and brca2 mutations with risk of breast and ovarian cancer[J]. JAMA, 2015,313(13):1347-1361. DOI: 10.1001/jama.2014.5985.
doi: 10.1001/jama.2014.5985 pmid: 25849179 |
[4] |
Chen S, Iversen ES, Friebel T, et al. Characterization of BRCA1 and BRCA2 mutations in a large united states sample[J]. J Clin Oncol, 2006,24(6):863-871. DOI: 10.1200/jco.2005.03.6772.
doi: 10.1200/JCO.2005.03.6772 pmid: 16484695 |
[5] |
Sun J, Meng H, Yao L, et al. Germline mutations in cancer susceptibility genes in a large series of unselected breast cancer patients[J]. Clin Cancer Res, 2017,23(20):6113-6119. DOI: 10.1158/1078-0432.CCR-16-3227.
pmid: 28724667 |
[6] |
Buys SS, Sandbach JF, Gammon A, et al. A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes[J]. Cancer, 2017,123(10):1721-1730. DOI: 10.1002/cncr.30498.
pmid: 28085182 |
[7] |
Tung N, Lin NU, Kidd J, et al. Frequency of germline mutations in 25 cancer susceptibility genes in a sequential series of patients with breast cancer[J]. J Clin Oncol, 2016,34(13):1460-1468. DOI: 10.1200/JCO.2015.65.0747.
doi: 10.1200/JCO.2015.65.0747 pmid: 26976419 |
[8] |
Yang X, Wu J, Lu J, et al. Identification of a comprehensive spectrum of genetic factors for hereditary breast cancer in a chinese population by next-generation sequencing[J]. PLoS One, 2015,10(4):e0125571. DOI: 10.1371/journal.pone.0125571.
doi: 10.1371/journal.pone.0125571 pmid: 25927356 |
[9] | 中国抗癌协会乳腺癌专业委员会. 中国抗癌协会乳腺癌诊治指南与规范(2019年版)[J]. 中国癌症杂志, 2019,29(8):609-679. DOI: 10.19401/j.cnki.1007-3639.2019.08.009. |
[10] |
Cuzick J, Sestak I, Cawthorn S, et al. Tamoxifen for prevention of breast cancer: extended long-term follow-up of the IBIS-I breast cancer prevention trial[J]. Lancet Oncol, 2015,16(1):67-75. DOI: 10.1016/s1470-2045(14)71171-4.
doi: 10.1016/S1470-2045(14)71171-4 pmid: 25497694 |
[11] |
Cuzick J, Sestak I, Forbes JF, et al. Anastrozole for prevention of breast cancer in high-risk postmenopausal women (IBIS-Ⅱ): an international, double-blind, randomised placebo-controlled trial[J]. Lancet, 2014,383(9922):1041-1048. DOI: 10.1016/s0140-6736(13)62292-8.
doi: 10.1016/S0140-6736(13)62292-8 pmid: 24333009 |
[12] | Carbine NE, Lostumbo L, Wallace J, et al. Risk-reducing mastectomy for the prevention of primary breast cancer[J]. Cochrane Database Syst Rev, 2018,4(4):CD002748. DOI: 10.1002/14651858.CD002748.pub4. |
[13] |
Heemskerk-Gerritsen BAM, Jager A, Koppert LB, et al. Survival after bilateral risk-reducing mastectomy in healthy BRCA1 and BRCA2 mutation carriers[J]. Breast Cancer Res Treat, 2019,177(3):723-733. DOI: 10.1007/s10549-019-05345-2.
doi: 10.1007/s10549-019-05345-2 pmid: 31302855 |
[14] |
Brennan K, Garcia-Closas M, Orr N, et al. Intragenic ATM methy-lation in peripheral blood DNA as a biomarker of breast cancer risk[J]. Cancer Res, 2012,72(9):2304-2313. DOI: 10.1158/0008-5472.can-11-3157.
doi: 10.1158/0008-5472.CAN-11-3157 pmid: 22374981 |
[15] |
Chen J, Haanpää MK, Gruber JJ, et al. High-resolution bisulfite-sequencing of peripheral blood DNA methylation in early-onset and familial risk breast cancer patients[J]. Clin Cancer Res, 2019,25(17):5301-5314. DOI: 10.1158/1078-0432.ccr-18-2423.
pmid: 31175093 |
[16] |
Bosviel R, Garcia S, Lavediaux G, et al. BRCA1 promoter methylation in peripheral blood DNA was identified in sporadic breast cancer and controls[J]. Cancer Epidemiol, 2012,36(3):e177-e182. DOI: 10.1016/j.canep.2012.02.001.
doi: 10.1016/j.canep.2012.02.001 |
[17] |
Tang Q, Holland-Letz T, Slynko A, et al. DNA methylation array analysis identifies breast cancer associated RPTOR, MGRN1 and RAPSN hypomethylation in peripheral blood DNA[J]. Oncotarget, 2016,7(39):64191-64202. DOI: 10.18632/oncotarget.11640.
doi: 10.18632/oncotarget.11640 pmid: 27577081 |
[18] |
Yang R, Pfütze K, Zucknick M, et al. DNA methylation array analyses identified breast cancer-associated HYAL2 methylation in peripheral blood[J]. Int J Cancer, 2015,136(8):1845-1855. DOI: 10.1002/ijc.29205.
doi: 10.1002/ijc.29205 pmid: 25213452 |
[19] |
Yang R, Stöcker S, Schott S, et al. The association between breast cancer and S100P methylation in peripheral blood by multicenter case-control studies[J]. Carcinogenesis, 2017,38(3):312-320. DOI: 10.1093/carcin/bgx004.
doi: 10.1093/carcin/bgx004 pmid: 28426874 |
[20] |
Parashar S, Cheishvili D, Mahmood N, et al. DNA methylation signatures of breast cancer in peripheral T-cells[J]. BMC Cancer, 2018,18(1):574. DOI: 10.1186/s12885-018-4482-7.
pmid: 29776342 |
[21] |
Shan M, Yin H, Li J, et al. Detection of aberrant methylation of a six-gene panel in serum DNA for diagnosis of breast cancer[J]. Oncotarget, 2016,7(14):18485-18494. DOI: 10.18632/oncotarget.7608.
doi: 10.18632/oncotarget.7608 pmid: 26918343 |
[22] |
Cao X, Tang Q, Holland-Letz T, et al. Evaluation of promoter methy-lation of RASSF1A and ATM in peripheral blood of breast cancer patients and healthy control individuals[J]. Int J Mol Sci, 2018,19(3):900. DOI: 10.3390/ijms19030900.
doi: 10.3390/ijms19030900 |
[23] |
Bodelon C, Ambatipudi S, Dugué PA, et al. Blood DNA methylation and breast cancer risk: a meta-analysis of four prospective cohort studies[J]. Breast Cancer Res, 2019,21(1):62. DOI: 10.1186/s13058-019-1145-9.
pmid: 31101124 |
[24] |
Bind MA, Zanobetti A, Gasparrini A, et al. Effects of temperature and relative humidity on DNA methylation[J]. Epidemiology, 2014,25(4):561-569. DOI: 10.1097/ede.0000000000000120.
doi: 10.1097/EDE.0000000000000120 pmid: 24809956 |
[25] |
Zhang FF, Cardarelli R, Carroll J, et al. Significant differences in global genomic DNA methylation by gender and race/ethnicity in peripheral blood[J]. Epigenetics, 2011,6(5):623-629. DOI: 10.4161/epi.6.5.15335.
pmid: 21739720 |
[26] |
Lal A, Ramazzotti D, Weng Z, et al. Comprehensive genomic cha-racterization of breast tumors with BRCA1 and BRCA2 mutations[J]. BMC Medical Genomics, 2019,12(1):84. DOI: 10.1186/s12920-019-0545-0.
doi: 10.1186/s12920-019-0545-0 pmid: 31182087 |
[27] |
Xu Z, Sandler DP, Taylor JA. Blood DNA methylation and breast cancer: a prospective case-cohort analysis in the sister study[J]. J Natl Cancer Inst, 2020,112(1):87-94. DOI: 10.1093/jnci/djz065.
doi: 10.1093/jnci/djz065 pmid: 30989176 |
[28] |
Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases[J]. Nat Rev Drug Discov, 2017,16(3):203-222. DOI: 10.1038/nrd.2016.246.
doi: 10.1038/nrd.2016.246 pmid: 28209991 |
[29] |
Farina NH, Ramsey JE, Cuke ME, et al. Development of a predictive mirna signature for breast cancer risk among high-risk women[J]. Oncotarget, 2017,8(68):112170-112183. DOI: 10.18632/oncotarget.22750.
doi: 10.18632/oncotarget.22750 pmid: 29348816 |
[30] |
Mishra S, Srivastava AK, Suman S, et al. Circulating miRNAs revealed as surrogate molecular signatures for the early detection of breast cancer[J]. Cancer Lett, 2015,369(1):67-75. DOI: 10.1016/j.canlet.2015.07.045.
doi: 10.1016/j.canlet.2015.07.045 |
[31] |
Zhang K, Wang YW, Wang YY, et al. Identification of microRNA biomarkers in the blood of breast cancer patients based on microNRA profiling[J]. Gene, 2017,619:10-20. DOI: 10.1016/j.gene.2017.03.038.
pmid: 28359916 |
[32] |
Shimomura A, Shiino S, Kawauchi J, et al. Novel combination of serum microrna for detecting breast cancer in the early stage[J]. Cancer Sci, 2016,107(3):326-334. DOI: 10.1111/cas.12880.
doi: 10.1111/cas.12880 pmid: 26749252 |
[33] |
Bidard FC, Michiels S, Riethdorf S, et al. Circulating tumor cells in breast cancer patients treated by neoadjuvant chemotherapy: a meta-analysis[J]. J Natl Cancer Inst, 2018,110(6):560-567. DOI: 10.1093/jnci/djy018.
doi: 10.1093/jnci/djy018 pmid: 29659933 |
[34] |
Rack B, Schindlbeck C, Jückstock J, et al. Circulating tumor cells predict survival in early average-to-high risk breast cancer patients[J]. J Natl Cancer Inst, 2014,106(5):dju066. DOI: 10.1093/jnci/dju066.
doi: 10.1093/jnci/dju066 pmid: 24832787 |
[35] |
Franken B, de Groot MR, Mastboom WJ, et al. Circulating tumor cells, disease recurrence and survival in newly diagnosed breast cancer[J]. Breast Cancer Res, 2012,14(5):R133. DOI: 10.1186/bcr3333.
pmid: 23088337 |
[36] |
Zhang Y, Lv Y, Niu Y, et al. Role of circulating tumor cell (CTC) monitoring in evaluating prognosis of triple-negative breast cancer patients in China[J]. Med Sci Monit, 2017,23:3071-3079. DOI: 10.12659/msm.902637.
doi: 10.12659/msm.902637 pmid: 28643770 |
[1] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[2] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[3] | Sa Qiang, Xu Hangcheng, Wang Jiayu. Advances in immunotherapy for breast cancer [J]. Journal of International Oncology, 2024, 51(4): 227-234. |
[4] | Yang Zhi, Lu Yiqiao, Gu Huayan, Ding Jialing, Guo Guilong. Research progress of tumor microenvironment mediated drug resistance in targeted therapy of breast cancer [J]. Journal of International Oncology, 2024, 51(4): 235-238. |
[5] | Xie Shuping, Sun Yahong, Wang Chao. Prediction of efficacy of early-stage tumor markers combined with NLR and PLR for immunotherapy in gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 157-165. |
[6] | Liu Yulan, Jing Haiyan, Sun Jing, Song Wei, Sha Dan. Advances in predicting efficacy and prognostic markers of immunotherapy for gastric cancer [J]. Journal of International Oncology, 2024, 51(3): 175-180. |
[7] | Peng Qin, Cai Yuting, Wang Wei. Advances on KPNA2 in liver cancer [J]. Journal of International Oncology, 2024, 51(3): 181-185. |
[8] | Chen Boguang, Wang Sugui, Zhang Yongjie. Role of serum cholinesterase and inflammatory markers in the prognosis of stage ⅠA -ⅢA breast cancer [J]. Journal of International Oncology, 2024, 51(2): 73-82. |
[9] | Gu Huayan, Zhu Teng, Guo Guilong. Breast microbiota and breast cancer: present and future [J]. Journal of International Oncology, 2024, 51(1): 55-58. |
[10] | Huang Zhen, Chen Yongshun. Research progress of circulating tumor DNA in the diagnosis and treatment of hepatocellular carcinoma [J]. Journal of International Oncology, 2024, 51(1): 59-64. |
[11] | Wang Jing, Xu Wenting. Value of NLR, CEA combined with coagulation indicators in the differential diagnosis of benign and malignant breast nodules with a diameter ≤ 1.0 cm [J]. Journal of International Oncology, 2023, 50(9): 520-526. |
[12] | Feng Chengtian, Huang Furong, Cao Shiyu, Wang Jianyu, Nanding Abiyasi, Jiang Yongdong, Zhu Juanying. Relationships between HER2 protein expression and imaging features in HER2 positive breast cancer patients [J]. Journal of International Oncology, 2023, 50(9): 527-531. |
[13] | Feng Dongxu, Wu Wei, Gao Pingfa, Wang Jun, Shi Lijuan, Chen Dawei, Li Wenbing, Zhang Meifeng. Effects of miR-451 on glycolysis and apoptosis of breast cancer cells by regulating Rho/ROCK1 pathway [J]. Journal of International Oncology, 2023, 50(8): 449-456. |
[14] | Pan Shulan, Liu Chang, He Ping. Effect of fritinib on angiogenesis, tumor growth and IRE1-ASK1-JNK pathway in triple negative breast cancer [J]. Journal of International Oncology, 2023, 50(8): 457-462. |
[15] | Wang Wende, Zeng De. Research progress on the mechanism of endocrine therapy resistance for breast cancer [J]. Journal of International Oncology, 2023, 50(6): 352-356. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||