Journal of International Oncology ›› 2020, Vol. 47 ›› Issue (12): 728-731.doi: 10.3760/cma.j.cn371439-20200401-00109
• Reviews • Previous Articles Next Articles
Wang Zhong1, Li Zhiyu1, Li Chenyuan1, Sun Si2, Sun Shengrong1()
Received:
2020-04-01
Revised:
2020-04-30
Online:
2020-12-08
Published:
2021-01-28
Contact:
Sun Shengrong
E-mail:sun137@sina.com
Supported by:
Wang Zhong, Li Zhiyu, Li Chenyuan, Sun Si, Sun Shengrong. G6PD and tumors[J]. Journal of International Oncology, 2020, 47(12): 728-731.
[1] |
Yang HC, Wu YH, Liu HY, et al. What has passed is prolog: new cellular and physiological roles of G6PD[J]. Free Radic Res, 2016,50(10):1047-1064. DOI: 10.1080/10715762.2016.1223296.
doi: 10.1080/10715762.2016.1223296 pmid: 27684214 |
[2] |
Ley B, Winasti Satyagraha A, Rahmat H, et al. Performance of the access Bio/CareStart rapid diagnostic test for the detection of glucose-6-phosphate dehydrogenase deficiency: a systematic review and meta-analysis[J]. PLoS Med, 2019,16(12):e1002992. DOI: 10.1371/journal.pmed.1002992.
doi: 10.1371/journal.pmed.1002992 pmid: 31834890 |
[3] |
Zhang HS, Zhang ZG, Du GY, et al. Nrf2 promotes breast cancer cell migration via up-regulation of G6PD/HIF-1α/Notch1 axis[J]. J Cell Mol Med, 2019,23(5):3451-3463. DOI: 10.1111/jcmm.14241.
doi: 10.1111/jcmm.14241 pmid: 30809937 |
[4] |
Shan C, Lu Z, Li Z, et al. 4-hydroxyphenylpyruvate dioxygenase promotes lung cancer growth via pentose phosphate pathway (PPP) flux mediated by LKB1-AMPK/HDAC10/G6PD axis[J]. Cell Death Dis, 2019,10(7):525. DOI: 10.1038/s41419-019-1756-1.
doi: 10.1038/s41419-019-1756-1 pmid: 31285420 |
[5] |
Zhang Q, Yang Z, Han Q, et al. G6PD promotes renal cell carcinoma proliferation through positive feedback regulation of p-STAT3[J]. Oncotarget, 2017,8(65):109043-109060. DOI: 10.18632/oncotarget.22566.
doi: 10.18632/oncotarget.22566 pmid: 29312589 |
[6] |
Luzzatto L, Nannelli C, Notaro R. Glucose-6-phosphate dehydroge-nase deficiency[J]. Hematol Oncol Clin North Am, 2016,30(2):373-393. DOI: 10.1016/j.hoc.2015.11.006.
doi: 10.1016/j.hoc.2015.11.006 pmid: 27040960 |
[7] |
Tiwari M. Glucose 6 phosphatase dehydrogenase (G6PD) and neurodegenerative disorders: mapping diagnostic and therapeutic opportunities[J]. Genes Dis, 2017,4(4):196-203. DOI: 10.1016/j.gendis.2017.09.001.
doi: 10.1016/j.gendis.2017.09.001 pmid: 30258923 |
[8] |
Buj R, Aird KM. Deoxyribonucleotide triphosphate metabolism in cancer and metabolic disease[J]. Front Endocrinol (Lausanne), 2018,9:177. DOI: 10.3389/fendo.2018.00177.
doi: 10.3389/fendo.2018.00177 |
[9] |
Chen X, Xu Z, Zhu Z, et al. Modulation of G6PD affects bladder cancer via ROS accumulation and the AKT pathway in vitro[J]. Int J Oncol, 2018,53(4):1703-1712. DOI: 10.3892/ijo.2018.4501.
doi: 10.3892/ijo.2018.4501 pmid: 30066842 |
[10] |
Cui J, Pan Y, Wang J, et al. MicroRNA-206 suppresses proliferation and predicts poor prognosis of HR-HPV-positive cervical cancer cells by targeting G6PD[J]. Oncol Lett, 2018,16(5):5946-5952. DOI: 10.3892/ol.2018.9326.
doi: 10.3892/ol.2018.9326 pmid: 30344744 |
[11] |
Liu CL, Hsu YC, Lee JJ, et al. Targeting the pentose phosphate pathway increases reactive oxygen species and induces apoptosis in thyroid cancer cells[J]. Mol Cell Endocrinol, 2020,499:110595. DOI: 10.1016/j.mce.2019.110595.
doi: 10.1016/j.mce.2019.110595 pmid: 31563469 |
[12] |
Barajas JM, Reyes R, Guerrero MJ, et al. The role of miR-122 in the dysregulation of glucose-6-phosphate dehydrogenase (G6PD) expression in hepatocellular cancer[J]. Sci Rep, 2018,8(1):9105. DOI: 10.1038/s41598-018-27358-5.
doi: 10.1038/s41598-018-27358-5 pmid: 29904144 |
[13] |
Tabata S, Yamamoto M, Goto H, et al. Thymidine catabolism promotes NADPH oxidase-derived reactive oxygen species (ROS) signalling in KB and yumoto cells[J]. Sci Rep, 2018,8(1):6760. DOI: 10.1038/s41598-018-25189-y.
doi: 10.1038/s41598-018-25189-y pmid: 29713062 |
[14] | Bierhansl L, Conradi LC, Treps L, et al. Central role of metabolism in endothelial cell function and vascular disease[J]. Physiology (Bethesda), 2017,32(2):126-140. DOI: 10.1152/physiol.00031.2016. |
[15] |
Singh D, Arora R, Kaur P, et al. Overexpression of hypoxia-indu-cible factor and metabolic pathways: possible targets of cancer[J]. Cell Biosci, 2017,7:62. DOI: 10.1186/s13578-017-0190-2.
doi: 10.1186/s13578-017-0190-2 pmid: 29158891 |
[16] | 李文清, 侯劲松. 上皮间质转化的表观遗传调控[J]. 国际肿瘤学杂志, 2017,44(12):918-921. DOI: 10.3760/cma.j.issn.1673-422X.2017.12.009. |
[17] |
Lu M, Lu L, Dong Q, et al. Elevated G6PD expression contributes to migration and invasion of hepatocellular carcinoma cells by inducing epithelial-mesenchymal transition[J]. Acta Biochim Biophys Sin (Shanghai), 2018,50(4):370-380. DOI: 10.1093/abbs/gmy009.
doi: 10.1093/abbs/gmy009 |
[18] |
Gandhi N, Das GM. Metabolic reprogramming in breast cancer and its therapeutic implications[J]. Cells, 2019,8(2):89. DOI: 10.3390/cells8020089.
doi: 10.3390/cells8020089 |
[19] |
Haun F, Neumann S, Peintner L, et al. Identifification of a novel anoikis signalling pathway using the fungal virulence factor gliotoxin[J]. Nat Commun, 2018,9(1):3524. DOI: 10.1038/s41467-018-05850-w.
doi: 10.1038/s41467-018-05850-w pmid: 30166526 |
[20] |
Yang L, He Z, Yao J, et al. Regulation of AMPK-related glycolipid metabolism imbalances redox homeostasis and inhibits anchorage independent growth in human breast cancer cells[J]. Redox Biol, 2018,17:180-191. DOI: 10.1016/j.redox.2018.04.016.
doi: 10.1016/j.redox.2018.04.016 pmid: 29702405 |
[21] |
Snezhkina AV, Kudryavtseva AV, Kardymon OL, et al. ROS gene-ration and antioxidant defense systems in normal and malignant cells[J]. Oxid Med Cell Longev, 2019,2019:6175804. DOI: 10.1155/2019/6175804.
doi: 10.1155/2019/6175804 pmid: 31467634 |
[22] |
Yin X, Tang B, Li JH, et al. ID1 promotes hepatocellular carcinoma proliferation and confers chemoresistance to oxaliplatin by activating pentose phosphate pathway[J]. J Exp Clin Cancer Res, 2017,36(1):166. DOI: 10.1186/s13046-017-0637-7.
doi: 10.1186/s13046-017-0637-7 pmid: 29169374 |
[23] |
Zhang R, Tao F, Ruan S, et al. The TGFβ1-FOXM1-HMGA1-TGFβ1 positive feedback loop increases the cisplatin resistance of non-small cell lung cancer by inducing G6PD expression[J]. Am J Transl Res, 2019,11(11):6860-6876.
pmid: 31814893 |
[24] |
Ju HQ, Lu YX, Wu QN, et al. Disrupting G6PD-mediated redox homeostasis enhances chemosensitivity in colorectal cancer[J]. Oncogene, 2017,36(45):6282-6292. DOI: 10.1038/onc.2017.227.
doi: 10.1038/onc.2017.227 pmid: 28692052 |
[25] |
Hong W, Cai P, Xu C, et al. Inhibition of glucose-6-phosphate dehydrogenase reverses cisplatin resistance in lung cancer cells via the Redox system[J]. Front Pharmacol, 2018,9:43. DOI: 10.3389/fphar.2018.00043.
doi: 10.3389/fphar.2018.00043 pmid: 29445340 |
[26] |
Samatiwat P, Prawan A, Senggunprai L, et al. Nrf2 inhibition sensitizes cholangiocarcinoma cells to cytotoxic and antiproliferative activities of chemotherapeutic agents[J]. Tumour Biol, 2016,37(8):11495-11507. DOI: 10.1007/s13277-016-5015-0.
doi: 10.1007/s13277-016-5015-0 pmid: 27015836 |
[27] |
Yang CA, Huang HY, Lin CL, et al. G6PD as a predictive marker for glioma risk, prognosis and chemosensitivity[J]. J Neurooncol, 2018,139(3):661-670. DOI: 10.1007/s11060-018-2911-8.
doi: 10.1007/s11060-018-2911-8 pmid: 29845423 |
[28] |
Liu B, Bai W, Ou G, et al. Cdh1-mediated metabolic switch from pentose phosphate pathway to glycolysis contributes to sevoflurane-induced neuronal apoptosis in developing brain[J]. ACS Chem Neurosci, 2019,10(5):2332-2344. DOI: 10.1021/acschemneuro.8b00644.
doi: 10.1021/acschemneuro.8b00644 pmid: 30741526 |
[29] |
Tu D, Gao Y, Yang R, et al. The pentose phosphate pathway regulates chronic neuroinflammation and dopaminergic neurodegeneration[J]. J Neuroinflammation, 2019,16(1):255. DOI: 10.1186/s12974-019-1659-1.
doi: 10.1186/s12974-019-1659-1 pmid: 31805953 |
[30] |
Fang Z, Jiang C, Feng Y, et al. Effects of G6PD activity inhibition on the viability, ROS generation and mechanical properties of cervical cancer cells[J]. Biochim Biophys Acta, 2016,1863(9):2245-2254. DOI: 10.1016/j.bbamcr.2016.05.016.
doi: 10.1016/j.bbamcr.2016.05.016 pmid: 27217331 |
[31] |
Mele L, Paino F, Papaccio F, et al. A new inhibitor of glucose-6-phosphate dehydrogenase blocks pentose phosphate pathwayand suppresses malignant proliferation and metastasis in vivo[J]. Cell Death Dis, 2018,9(5):572. DOI: 10.1038/s41419-018-0635-5.
doi: 10.1038/s41419-018-0635-5 pmid: 29760380 |
[32] |
Yang HC, Wu YH, Yen WC, et al. The redox role of G6PD in cell growth, cell death,and cancer[J]. Cells, 2019,8(9):1055. DOI: 10.3390/cells8091055.
doi: 10.3390/cells8091055 |
[33] |
Juliano RL. The delivery of therapeutic oligonucleotides[J]. Nucleic Acids Res, 2016,44(14):6518-6548. DOI: 10.1093/nar/gkw236.
doi: 10.1093/nar/gkw236 pmid: 27084936 |
[34] |
Ahmad F, Dixit D, Sharma V, et al. Nrf2-driven TERT regulates pentose phosphate pathway in glioblastoma[J]. Cell Death Dis, 2016,7(5):e2213. DOI: 10.1038/cddis.2016.117.
doi: 10.1038/cddis.2016.117 |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[4] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[5] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[6] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[7] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[8] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[9] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[11] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[12] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[13] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[14] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[15] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||