Journal of International Oncology ›› 2020, Vol. 47 ›› Issue (11): 682-685.doi: 10.3760/cma.j.cn371439-20200401-00100
• Reviews • Previous Articles Next Articles
Dai Yueyu1, Song Qibin1,2(), Hu Weiguo1,2()
Received:
2020-04-01
Revised:
2020-08-17
Online:
2020-11-08
Published:
2021-01-05
Contact:
Song Qibin,Hu Weiguo
E-mail:qibinsong@163.com;hwg74@163.com
Dai Yueyu, Song Qibin, Hu Weiguo. Uncoupling proteins and tumor[J]. Journal of International Oncology, 2020, 47(11): 682-685.
[1] |
Porter C. Quantification of UCP1 function in human brown adipose tissue[J]. Adipocyte, 2017,6(2):167-174. DOI: 10.1080/21623945.2017.1319535.
doi: 10.1080/21623945.2017.1319535 pmid: 28453364 |
[2] |
Giatromanolaki A, Balaska K, Kalamida D, et al. Thermogenic protein UCP1 and UCP3 expression in non-small cell lung cancer: relation with glycolysis and anaerobic metabolism[J]. Cancer Biol Med, 2017,14(4):396-404. DOI: 10.20892/j.issn.2095-3941.2017.0089.
doi: 10.20892/j.issn.2095-3941.2017.0089 pmid: 29372106 |
[3] |
Ravaud C, Paré M, Yao X, et al. Resveratrol and HIV-protease inhibitors control UCP1 expression through opposite effects on p38 MAPK phosphorylation in human adipocytes[J]. J Cell Physiol, 2020,235(2):1184-1196. DOI: 10.1002/jcp.29032.
doi: 10.1002/jcp.29032 pmid: 31294462 |
[4] |
Dodd GT, Decherf S, Loh K, et al. Leptin and insulin act on POMC neurons to promote the browning of white fat[J]. Cell, 2015,160(1-2):88-104. DOI: 10.1016/j.cell.2014.12.022.
doi: 10.1016/j.cell.2014.12.022 pmid: 25594176 |
[5] |
Zong WX, Rabinowitz JD, White E. Mitochondria and cancer[J]. Mol Cell, 2016,61(5):667-676. DOI: 10.1016/j.molcel.2016.02.011.
doi: 10.1016/j.molcel.2016.02.011 pmid: 26942671 |
[6] |
Alnabulsi A, Cash B, Hu Y, et al. The expression of brown fat-associated proteins in colorectal cancer and the relationship of uncoupling protein 1 with prognosis[J]. Int J Cancer, 2019,145(4):1138-1147. DOI: 10.1002/ijc.32198.
doi: 10.1002/ijc.32198 pmid: 30737786 |
[7] |
Aguilar E, Esteves P, Sancerni T, et al. UCP2 Deficiency increases colon tumorigenesis by promoting lipid synjournal and depleting NADPH for antioxidant defenses[J]. Cell Rep, 2019, 28(9):2306-2316.e5. DOI: 10.1016/j.celrep.2019.07.097.
doi: 10.1016/j.celrep.2019.07.097 pmid: 31461648 |
[8] |
Yu J, Shi L, Shen X, et al. UCP2 regulates cholangiocarcinoma cell plasticity via mitochondria-to-AMPK signals[J]. Biochem Pharmacol, 2019,166:174-184. DOI: 10.1016/j.bcp.2019.05.017.
doi: 10.1016/j.bcp.2019.05.017 pmid: 31085159 |
[9] |
Elattar S, Dimri M, Satyanarayana A. The tumor secretory factor ZAG promotes white adipose tissue browning and energy wasting[J]. FASEB J, 2018,32(9):4727-4743. DOI: 10.1096/fj.201701465RR.
doi: 10.1096/fj.201701465RR pmid: 29570397 |
[10] |
Chen HF, Hsu CM, Huang YS. CPEB2-dependent translation of long 3'-UTR UCP1 mRNA promotes thermogenesis in brown adipose tissue[J]. EMBO J, 2018,37(20):e99071. DOI: 10.15252/embj.201899071.
doi: 10.15252/embj.201899071 pmid: 30177570 |
[11] |
Porter C, Herndon DN, Chondronikola M, et al. Human and mouse brown adipose tissue mitochondria have comparable UCP1 function[J]. Cell Metab, 2016,24(2):246-255. DOI: 10.1016/j.cmet.2016.07.004.
doi: 10.1016/j.cmet.2016.07.004 pmid: 27508873 |
[12] |
Vaitkus JA, Celi FS. The role of adipose tissue in cancer-associated cachexia[J]. Exp Biol Med (Maywood), 2017,242(5):473-481. DOI: 10.1177/1535370216683282.
doi: 10.1177/1535370216683282 |
[13] | Xiong Z, Xiao W, Bao L, et al. Tumor cell "slimming" regulates tumor progression through PLCL1/UCP1-mediated lipid browning[J]. Adv Sci (Weinh), 2019,6(10):1801862. DOI: 10.1002/advs.201801862. |
[14] |
Lima TI, Guimaraes D, Sponton CH, et al. Essential role of the PGC-1α/PPARβ axis in UCP3 gene induction[J]. J Physiol, 2019,597(16):4277-4291. DOI: 10.1113/jp278006.
doi: 10.1113/JP278006 pmid: 31228206 |
[15] |
Villarroya F, Peyrou M, Giralt M. Transcriptional regulation of the uncoupling protein-1 gene[J]. Biochimie, 2017,134:86-92. DOI: 10.1016/j.biochi.2016.09.017.
doi: 10.1016/j.biochi.2016.09.017 pmid: 27693079 |
[16] |
Kliewer KL, Ke JY, Tian M, et al. Adipose tissue lipolysis and energy metabolism in early cancer cachexia in mice[J]. Cancer Biol Ther, 2015,16(6):886-897. DOI: 10.4161/15384047.2014.987075.
doi: 10.4161/15384047.2014.987075 pmid: 25457061 |
[17] | Castrejón-Tellez V, Rodríguez-Pérez JM, Pérez-Torres I, et al. The effect of resveratrol and quercetin treatment on PPAR mediated uncoupling protein (UCP-) 1, 2, and 3 expression in visceral white adipose tissue from metabolic syndrome rats[J]. Int J Mol Sci, 2016,17(7):1069. DOI: 10.3390/ijms17071069. |
[18] | Muter J, Brighton PJ, Lucas ES, et al. Progesterone-dependent induction of phospholipase C-related catalytically inactive protein 1 (PRIP-1) in decidualizing human endometrial stromal cells[J]. Endocrinology, 2016,157(7):2883-2893. DOI: 10.1210/en.2015-1914. |
[19] |
Basu S, Gnanapradeepan K, Barnoud T, et al. Mutant p53 controls tumor metabolism and metastasis by regulating PGC-1α[J]. Genes Dev, 2018,32(3-4):230-243. DOI: 10.1101/gad.309062.117.
doi: 10.1101/gad.309062.117 pmid: 29463573 |
[20] |
Hallenborg P, Fjære E, Liaset B, et al. p53 regulates expression of uncoupling protein 1 through binding and repression of PPARγ coactivator-1α[J]. Am J Physiol Endocrinol Metab, 2016,310(2):E116-E128. DOI: 10.1152/ajpendo.00119.2015.
pmid: 26578713 |
[21] |
Zhang X, Li CF, Zhang L, et al. TRAF6 Restricts p53 mitochon-drial translocation, apoptosis, and tumor suppression[J]. Mol Cell, 2016,64(4):803-814. DOI: 10.1016/j.molcel.2016.10.002.
doi: 10.1016/j.molcel.2016.10.002 pmid: 27818144 |
[22] |
Cordani M, Butera G, Dando I, et al. Mutant p53 blocks SESN1/AMPK/PGC-1α/UCP2 axis increasing mitochondrial $O_{2-}$· production in cancer cells [J]. Br J Cancer, 2018,119(8):994-1008. DOI: 10.1038/s41416-018-0288-2.
doi: 10.1038/s41416-018-0288-2 pmid: 30318520 |
[23] |
Dando I, Pacchiana R, Pozza ED, et al. UCP2 inhibition induces ROS/Akt/mTOR axis: role of GAPDH nuclear translocation in genipin/everolimus anticancer synergism[J]. Free Radic Biol Med, 2017,113:176-189. DOI: 10.1016/j.freeradbiomed.2017.09.022.
doi: 10.1016/j.freeradbiomed.2017.09.022 pmid: 28962872 |
[24] |
Yu J, Shi L, Lin W, et al. UCP2 promotes proliferation and chemoresistance through regulating the NF-κB/β-catenin axis and mitochondrial ROS in gallbladder cancer[J]. Biochem Pharmacol, 2020,172:113745. DOI: 10.1016/j.bcp.2019.113745.
doi: 10.1016/j.bcp.2019.113745 pmid: 31811866 |
[25] |
Madreiter-Sokolowski CT, Gyorffy B, Klec C, et al. UCP2 and PRMT1 are key prognostic markers for lung carcinoma patients[J]. Oncotarget, 2017,8(46):80278-80285. DOI: 10.18632/oncotarget.20571.
doi: 10.18632/oncotarget.20571 pmid: 29113301 |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[4] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[5] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[6] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[7] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[8] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[9] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[11] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[12] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[13] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[14] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[15] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||