Journal of International Oncology ›› 2020, Vol. 47 ›› Issue (7): 419-422.doi: 10.3760/cma.j.cn371439-20200224-00048
• Review • Previous Articles Next Articles
Received:
2020-02-24
Revised:
2020-03-06
Online:
2020-07-08
Published:
2020-08-18
Contact:
Ma Fei
E-mail:drmafei@126.com
Zhai Jingtong, Ma Fei. Research on the function and targeted therapy of BCL9 in malignant tumors[J]. Journal of International Oncology, 2020, 47(7): 419-422.
[1] |
Schaefer KN, Peifer M. Wnt/beta-catenin signaling regulation and a role for biomolecular condensates[J]. Dev Cell, 2019,48(4):429-444. DOI: 10.1016/j.devcel.2019.01.025.
doi: 10.1016/j.devcel.2019.01.025 pmid: 30782412 |
[2] |
Krishnamurthy N, Kurzrock R. Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors[J]. Cancer Treat Rev, 2018,62:50-60. DOI: 10.1016/j.ctrv.2017.11.002.
pmid: 29169144 |
[3] |
Feng M, Jin JQ, Xia L, et al. Pharmacological inhibition of β-catenin/BCL9 interaction overcomes resistance to immune checkpoint blockades by modulating Treg cells[J]. Sci Adv, 2019, 5(5): eaau5240. DOI: 10.1126/sciadv.aau5240.
doi: 10.1126/sciadv.aau5240 pmid: 31086813 |
[4] | Zhang J, Tian XJ, Xing J. Signal transduction pathways of EMT induced by TGF-β, SHH, and WNT and their crosstalks[J]. J Clin Med, 2016,5(4):41. DOI: 10.3390/jcm5040041. |
[5] |
Moor AE, Anderle P, Cantù C, et al. BCL9/9L-β-catenin signaling is associated with poor outcome in colorectal cancer[J]. EBioMedicine, 2015,2(12):1932-1943. DOI: 10.1016/j.ebiom.2015.10.030.
doi: 10.1016/j.ebiom.2015.10.030 pmid: 26844272 |
[6] |
Luo M, Hou L, Li J, et al. VEGF/NRP-1axis promotes progression of breast cancer via enhancement of epithelial-mesenchymal transition and activation of NF-κB and β-catenin[J]. Cancer Lett, 2016,373(1):1-11. DOI: 10.1016/j.canlet.2016.01.010.
doi: 10.1016/j.canlet.2016.01.010 pmid: 26805761 |
[7] |
Linke F, Harenberg M, Nietert MM, et al. Microenvironmental interactions between endothelial and lymphoma cells: a role for the cano-nical WNT pathway in Hodgkin lymphoma[J]. Leukemia, 2017,31(2):361-372. DOI: 10.1038/leu.2016.232.
doi: 10.1038/leu.2016.232 pmid: 27535218 |
[8] |
Pascual G, Avgustinova A, Mejetta S, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36[J]. Nature, 2017,541(7635):41-45. DOI: 10.1038/nature20791.
pmid: 27974793 |
[9] |
Schmitt M, Metzger M, Gradl D, et al. CD44 functions in Wnt signaling by regulating LRP6 localization and activation[J]. Cell Death Differ, 2015,22(4):677-689. DOI: 10.1038/cdd.2014.156.
doi: 10.1038/cdd.2014.156 pmid: 25301071 |
[10] |
Zhan T, Ambrosi G, Wandmacher AM, et al. MEK inhibitors activate Wnt signalling and induce stem cell plasticity in colorectal cancer[J]. Nat Commun, 2019,10(1):2197. DOI: 10.1038/s41467-019-09898-0.
doi: 10.1038/s41467-019-09898-0 pmid: 31097693 |
[11] |
Gay DM, Ridgway RA, Müller M, et al. Loss of BCL9/9l sup-presses Wnt driven tumourigenesis in models that recapitulate human cancer[J]. Nat Commun, 2019,10(1):723. DOI: 10.1038/s41467-019-08586-3.
doi: 10.1038/s41467-019-08586-3 pmid: 30760720 |
[12] |
Elsarraj HS, Hong Y, Valdez KE, et al. Expression profiling of in vivo ductal carcinoma in situ progression models identified B cell lymphoma-9 as a molecular driver of breast cancer invasion[J]. Breast Cancer Res, 2015,17:128. DOI: 10.1186/s13058-015-0630-z.
doi: 10.1186/s13058-015-0630-z pmid: 26384318 |
[13] |
Madani SH, Payandeh M, Sadeghi M, et al. The correlation between Ki-67 with other prognostic factors in breast cancer: a study in Iranian patients[J]. Indian J Med Paediatr Oncol, 2016,37(2):95-99. DOI: 10.4103/0971-5851.180136.
doi: 10.4103/0971-5851.180136 pmid: 27168707 |
[14] |
Jiang M, Kang Y, Sewastianik T, et al. BCL9 provides multi-cellular communication properties in colorectal cancer by interacting with paraspeckle proteins[J]. Nat Commun, 2020,11(1):19. DOI: 10.1038/s41467-019-13842-7.
doi: 10.1038/s41467-019-13842-7 pmid: 31911584 |
[15] | Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma[J]. Cell, 2017, 169(7): 1327-1341. e1323. DOI: 10.1016/j.cell.2017.05.046. |
[16] |
Huge N, Sandbothe M, Schröder AK, et al. Wnt status-dependent oncogenic role of BCL9 and BCL9L in hepatocellular carcinoma[J]. Hepatol Int, 2020,14(3):373-384. DOI: 10.1007/s12072-019-09977-w.
doi: 10.1007/s12072-019-09977-w pmid: 31440992 |
[17] |
Xu W, Zhou W, Cheng M, et al. Hypoxia activates Wnt/β-catenin signaling by regulating the expression of BCL9 in human hepatocel-lular carcinoma[J]. Sci Rep, 2017,7:40446. DOI: 10.1038/srep40446.
doi: 10.1038/srep40446 pmid: 28074862 |
[18] |
Cai J, Fang L, Huang Y, et al. Simultaneous overactivation of Wnt/β-catenin and TGFβ signalling by miR-128-3p confers chemoresistance-associated metastasis in NSCLC[J]. Nat Commun, 2017,8:15870. DOI: 10.1038/ncomms15870.
doi: 10.1038/ncomms15870 pmid: 28627514 |
[19] |
Zhang Y, Zhang Q, Chen H, et al. BCL9 promotes epithelial mesenchymal transition and invasion in cisplatin resistant NSCLC cells via β-catenin pathway[J]. Life Sci, 2018,208:284-294. DOI: 10.1016/j.lfs.2018.07.023.
doi: 10.1016/j.lfs.2018.07.023 pmid: 30009824 |
[20] |
Mita MM, Becerra C, Richards DA, et al. Phase 1b study of WNT inhibitor vantictumab (VAN, human monoclonal antibody) with paclitaxel (P) in patients (pts) with 1st- to 3rd-line metastatic HER2-negative breast cancer (BC) [J]. J Clin Oncol, 2016,34(15_suppl):2516. DOI: 10.1200/JCO.2016.34.15_suppl.2516.
doi: 10.1200/JCO.2015.66.0787 |
[21] |
Le PN, McDermott JD, Jimeno A. Targeting the Wnt pathway in human cancers: therapeutic targeting with a focus on OMP-54F28[J]. Pharmacol Ther, 2015,146:1-11. DOI: 10.1016/j.pharmthera.2014.08.005.
doi: 10.1016/j.pharmthera.2014.08.005 pmid: 25172549 |
[22] |
Moore KN, Gunderson CC, Sabbatini P, et al. A phase 1b dose escalation study of ipafricept (OMP54F28) in combination with paclitaxel and carboplatin in patients with recurrent platinum-sensitive ovarian cancer[J]. Gynecol Oncol, 2019,154(2):294-301. DOI: 10.1016/j.ygyno.2019.04.001.
doi: 10.1016/j.ygyno.2019.04.001 pmid: 31174889 |
[23] |
Mariotti L, Pollock K, Guettler S. Regulation of Wnt/β-catenin signalling by tankyrase-dependent poly(ADP-ribosyl)ation and scaffolding[J]. Br J Pharmacol, 2017,174(24):4611-4636. DOI: 10.1111/bph.14038.
doi: 10.1111/bph.14038 pmid: 28910490 |
[24] |
Arqués O, Chicote I, Puig I, et al. Tankyrase inhibition blocks Wnt/β-catenin pathway and reverts resistance to PI3K and AKT inhibitors in the treatment of colorectal cancer[J]. Clin Cancer Res, 2016,22(3):644-656. DOI: 10.1158/1078-0432.CCR-14-3081.
doi: 10.1158/1078-0432.CCR-14-3081 pmid: 26224873 |
[25] |
Fang L, Zhu Q, Neuenschwander M, et al. A small-molecule ant-agonist of the β-Catenin/TCF4 interaction blocks the self-renewal of cancer stem cells and suppresses tumorigenesis[J]. Cancer Res, 2016,76(4):891-901. DOI: 10.1158/0008-5472.CAN-15-1519.
doi: 10.1158/0008-5472.CAN-15-1519 pmid: 26645562 |
[26] |
Hwang SY, Deng X, Byun S, et al. Direct targeting of β-catenin by a small molecule stimulates proteasomal degradation and suppresses oncogenic Wnt/β-catenin signaling[J]. Cell Rep, 2016,16(1):28-36. DOI: 10.1016/j.celrep.2016.05.071.
doi: 10.1016/j.celrep.2016.05.071 pmid: 27320923 |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[3] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[4] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[5] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[6] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[7] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[8] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[9] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[10] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[11] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[12] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[13] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
[14] | Zhang Ningning, Yang Zhe, Tan Limei, Li Zhenning, Wang Di, Wei Yongzhi. Diagnostic value of cervical cell DNA ploidy analysis combined with B7-H4 and PKCδ for cervical cancer [J]. Journal of International Oncology, 2024, 51(5): 286-291. |
[15] | Fu Yi, Ma Chenying, Zhang Lu, Zhou Juying. Research progress of habitat analysis in radiomics of malignant tumors [J]. Journal of International Oncology, 2024, 51(5): 292-297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||