Journal of International Oncology ›› 2020, Vol. 47 ›› Issue (7): 414-418.doi: 10.3760/cma.j.cn371439-20200216-00047
• Review • Previous Articles Next Articles
Zhao Na1, Zheng Yang2, Chen Lili3, Jing Donghui1, Wang Huaqing2()
Received:
2020-02-16
Revised:
2020-04-27
Online:
2020-07-08
Published:
2020-08-18
Contact:
Wang Huaqing
E-mail:huaqingw@163.com
Supported by:
Zhao Na, Zheng Yang, Chen Lili, Jing Donghui, Wang Huaqing. Clinical value and application of SPINK1 as a tumor biomarker[J]. Journal of International Oncology, 2020, 47(7): 414-418.
[1] |
Itkonen O, Stenman UH. TATI as a biomarker[J]. Clin Chim Acta, 2014,431:260-269. DOI: 10.1016/j.cca.2014.02.014.
doi: 10.1016/j.cca.2014.02.014 pmid: 24583226 |
[2] |
Huhtala ML, Pesonen K, Kalkkinen N, et al. Purification and characterization of a tumor-associated trypsin inhibitor from the urine of a patient with ovarian cancer[J]. J Biol Chem, 1982,257(22):13713-13716.
pmid: 7142173 |
[3] |
Räsänen K, Itkonen O, Koistinen H, et al. Emerging roles of SPINK1 in cancer[J]. Clin Chem, 2016,62(3):449-457. DOI: 10.1373/clinchem.2015.241513.
doi: 10.1373/clinchem.2015.241513 pmid: 26656134 |
[4] |
Mehner C, Radisky ES. Bad tumors made worse: SPINK1[J]. Front Cell Dev Biol, 2019,7:10. DOI: 10.3389/fcell.2019.00010.
doi: 10.3389/fcell.2019.00010 pmid: 30778387 |
[5] |
Bonifácio VDB. Ovarian cancer biomarkers: moving forward in early detection[J]. Adv Exp Med Biol, 2020,1219:355-363. DOI: 10.1007/978-3-030-34025-4_18.
doi: 10.1007/978-3-030-34025-4_18 pmid: 32130708 |
[6] |
Nissi R, Talvensaari-Mattila A, Kuvaja P, et al. Claudin-5 is asso-ciated with elevated TATI and CA125 levels in mucinous ovarian borderline tumors[J]. Anticancer Res, 2015,35(2):973-976.
pmid: 25667483 |
[7] |
Mehner C, Oberg AL, Kalli KR, et al. Serine protease inhibitor Kazal type 1 (SPINK1) drives proliferation and anoikis resistance in a subset of ovarian cancers[J]. Oncotarget, 2015,6(34):35737-35754. DOI: 10.18632/oncotarget.5927.
doi: 10.18632/oncotarget.5927 pmid: 26437224 |
[8] |
Shadhu K, Xi C. Inflammation and pancreatic cancer: an updated review[J]. Saudi J Gastroenterol, 2019,25(1):3-13. DOI: 10.4103/sjg.SJG_390_18.
doi: 10.4103/sjg.SJG_390_18 pmid: 30588953 |
[9] |
Muller N, Sarantitis I, Rouanet M, et al. Natural history of SPINK1 germline mutation related-pancreatitis[J]. EBioMedicine, 2019,48:581-591. DOI: 10.1016/j.ebiom.2019.09.032.
doi: 10.1016/j.ebiom.2019.09.032 pmid: 31628023 |
[10] | 张敏, 王银萍, 倪劲松, 等. CFTR及SPINK1蛋白在慢性胰腺炎及胰腺癌中的表达及其意义[J]. 中国实验诊断学, 2011,15(10):1625-1628. DOI: 10.3969/j.issn.1007-4287.2011.10.005. |
[11] |
Zhang J, Wang D, Hu N, et al. The construction and proliferative effects of a lentiviral vector capable of stably overexpressing SPINK1 gene in human pancreatic cancer AsPC-1 cell line[J]. Tumour Biol, 2016,37(5):5847-5855. DOI: 10.1007/s13277-015-4405-z.
pmid: 26586397 |
[12] |
Johnson MH, Ross AE, Alshalalfa M, et al. SPINK1 defines a molecular subtype of prostate cancer in men with more rapid progression in an at risk, natural history radical prostatectomy cohort[J]. J Urol, 2016,196(5):1436-1444. DOI: 10.1016/j.juro.2016.05.092.
doi: 10.1016/j.juro.2016.05.092 pmid: 27238617 |
[13] |
Yun SJ, Kim SK, Kim J, et al. Transcriptomic features of primary prostate cancer and their prognostic relevance to castration-resistant prostate cancer[J]. Oncotarget, 2017,8(70):114845-114855. DOI: 10.18632/oncotarget.22296.
pmid: 29383125 |
[14] |
Zhang X, Yin X, Shen P, et al. The association between SPINK1 and clinical outcomes in patients with prostate cancer: a systematic review and meta-analysis[J]. Onco Targets Ther, 2017,10:3123-3130. DOI: 10.2147/OTT.S127317.
pmid: 28790846 |
[15] |
Wang C, Wang L, Su B, et al. Serine protease inhibitor Kazal type 1 promotes epithelial-mesenchymal transition through EGFR signaling pathway in prostate cancer[J]. Prostate, 2014,74(7):689-701. DOI: 10.1002/pros.22787.
doi: 10.1002/pros.22787 |
[16] | 徐圆圆, 张丽, 金良昆. 免疫微环境介导的肿瘤耐受机制及其靶向治疗[J]. 国际肿瘤学杂志, 2017,44(8):594-596. DOI: 10.3760/cma.j.issn.1673-422X.2017.08.009. |
[17] |
Chen F, Long Q, Fu D, et al. Targeting SPINK1 in the damaged tumour microenvironment alleviates therapeutic resistance[J]. Nat Commun, 2018,9(1):4315. DOI: 10.1038/s41467-018-06860-4.
pmid: 30333494 |
[18] |
Luo P, Wu S, Yu YL, et al. Current status and perspective biomarkers in AFP negative HCC: towards screening for and diagnosing hepatocellular carcinoma at an earlier stage[J]. Pathol Oncol Res, 2020,26(2):599-603. DOI: 10.1007/s12253-019-00585-5.
doi: 10.1007/s12253-019-00585-5 pmid: 30661224 |
[19] |
Jee BA, Choi JH, Rhee H, et al. Dynamics of genomic, epige-nomic, and transcriptomic aberrations during stepwise hepatocarcino-genesis[J]. Cancer Res, 2019,79(21):5500-5512. DOI: 10.1158/0008-5472.CAN-19-0991.
doi: 10.1158/0008-5472.CAN-19-0991 pmid: 31506333 |
[20] |
Huang K, Xie W, Wang S, et al. High SPINK1 expression predicts poor prognosis and promotes cell proliferation and metastasis of hepatocellular carcinoma[J]. J Invest Surg, 2020, 1-10. DOI: 10.1080/08941939.2020.1728443.
doi: 10.1080/08941939.2020.1786612 pmid: 32619124 |
[21] | Shek FH, Luo R, Lam BYH, et al. Serine peptidase inhibitor Kazal type 1 (SPINK1) as novel downstream effector of the cadherin-17/β-catenin axis in hepatocellular carcinoma[J]. Cell Oncol (Dordr), 2017,40(5):443-456. DOI: 10.1007/s13402-017-0332-x. |
[22] |
Chang C, Zhao W, Luo Y, et al. Serine peptidase inhibitor Kazal type Ⅰ (SPINK1) promotes BRL-3A cell proliferation via p38, ERK, and JNK pathways[J]. Cell Biochem Funct, 2017,35(6):339-348. DOI: 10.1002/cbf.3288.
pmid: 28845526 |
[23] |
Ying HY, Gong CJ, Feng Y, et al. Serine protease inhibitor Kazal type 1 (SPINK1) downregulates E-cadherin and induces EMT of hepatoma cells to promote hepatocellular carcinoma metastasis via the MEK/ERK signaling pathway[J]. J Dig Dis, 2017,18(6):349-358. DOI: 10.1111/1751-2980.12486.
pmid: 28544403 |
[24] |
Li F, Liu T, Xiao CY, et al. FOXP1 and SPINK1 reflect the risk of cirrhosis progression to HCC with HBV infection[J]. Biomed Pharmacother, 2015,72:103-108. DOI: 10.1016/j.biopha.2015.04.006.
pmid: 26054682 |
[25] |
Zhu C, Han H, Li J, et al. Hepatitis B virus X protein-induced serine protease inhibitor Kazal type 1 is associated with the progression of HBV-related diseases[J]. Biomed Res Int, 2019,2019:9321494. DOI: 10.1155/2019/9321494.
doi: 10.1155/2019/9321494 pmid: 31240230 |
[26] |
El-mezayen HA, Metwally FM, Darwish H. A novel discriminant score based on tumor-associated trypsin inhibitor for accurate diag-nosis of metastasis in patients with breast cancer[J]. Tumour Biol, 2014,35(3):2759-2767. DOI: 10.1007/s13277-013-1366-y.
pmid: 24222329 |
[27] |
Soon WW, Miller LD, Black MA, et al. Combined genomic and phenotype screening reveals secretory factor SPINK1 as an invasion and survival factor associated with patient prognosis in breast cancer[J]. EMBO Mol Med, 2011,3(8):451-464. DOI: 10.1002/emmm.201100150.
pmid: 21656687 |
[28] |
Kapoor S. Diagnostic and prognostic value of tumor-associated trypsin inhibitor in gastrointestinal malignancies[J]. Scand J Gastroenterol, 2014,49(4):514-515. DOI: 10.3109/00365521.2013.878385.
doi: 10.3109/00365521.2013.878385 pmid: 24444434 |
[29] |
Koide H, Kimura T, Inaba H, et al. Comparison of ERG and SPINK1 expression among incidental and metastatic prostate cancer in Japanese men[J]. Prostate, 2019,79(1):3-8. DOI: 10.1002/pros.23705.
pmid: 30051483 |
[30] |
Koskensalo S, Louhimo J, Hagström J, et al. Concomitant tumor expression of EGFR and TATI/SPINK1 associates with better prog-nosis in colorectal cancer[J]. PLoS One, 2013,8(10):e76906. DOI: 10.1371/journal.pone.0076906.
pmid: 24204699 |
[31] |
Tan Z, Gao L, Wang Y, et al. PRSS contributes to cetuximab resis-tance in colorectal cancer[J]. Sci Adv, 2020, 6(1): eaax5576. DOI: 10.1126/sciadv.aax5576.
doi: 10.1126/sciadv.aax5576 pmid: 31911942 |
[32] |
Kasurinen A, Laitinen A, Kokkola A, et al. Tumor-associated trypsin inhibitor (TATI) and tumor-associated trypsin-2 (TAT-2) predict outcomes in gastric cancer[J]. Acta Oncol, 2020,59(6):681-688. DOI: 10.1080/0284186X.2020.1733655.
doi: 10.1080/0284186X.2020.1733655 |
[33] |
Rink M, Park K, Volkmer BG, et al. Loss of SPINK1 expression is associated with unfavorable outcomes in urothelial carcinoma of the bladder after radical cystectomy[J]. Urol Oncol, 2013,31(8):1716-1724. DOI: 10.1016/j.urolonc.2012.06.011.
doi: 10.1016/j.urolonc.2012.06.011 pmid: 22944196 |
[34] |
Jiang W, Zhu D, Wang C, et al. An immune relevant signature for predicting prognoses and immunotherapeutic responses in patients with muscle-invasive bladder cancer (MIBC)[J]. Cancer Med, 2020,9(8):2774-2790. DOI: 10.1002/cam4.2942.
doi: 10.1002/cam4.2942 pmid: 32096345 |
[35] |
Guo M, Zhou X, Han X, et al. SPINK1 is a prognosis predicting factor of non-small cell lung cancer and regulates redox homeostasis[J]. Oncol Lett, 2019,18(6):6899-6908. DOI: 10.3892/ol.2019.11005.
doi: 10.3892/ol.2019.11005 pmid: 31788129 |
[36] |
Xu L, Lu C, Huang Y, et al. SPINK1 promotes cell growth and metastasis of lung adenocarcinoma and acts as a novel prognostic biomarker[J]. BMB Rep, 2018,51(12):648-653. DOI: 10.5483/BMBRep.2018.51.12.205.
pmid: 30545439 |
[37] |
Kozakiewicz B, Chadzyńska M, Dmoch-Gajzlerska E, et al. Moni-toring the treatment outcome in endometrial cancer patients by CEA and TATI [J]. Tumor Biol, 2016,37(7):9367-9374. DOI: 10.1007/s13277-016-4784-9.
doi: 10.1007/s13277-016-4784-9 |
[38] |
Liu A, Xue Y, Liu F, et al. Prognostic value of the combined expression of tumor-associated trypsin inhibitor (TATI) and p53 in patients with bladder cancer undergoing radical cystectomy[J]. Cancer Biomark, 2019,26(3):281-289. DOI: 10.3233/CBM-182143.
doi: 10.3233/CBM-182143 pmid: 31594208 |
[39] | Masfufa IW, Fattah M. The correlation between serum SPINK1 and CA 15-3[J]. Clin Chim Acta, 2019,493(2019):S118-S118. DOI: 10.1016/j.cca.2019.03.250. |
[40] |
Janeiro E, Guimarães J, Stenman UH, et al. Validation and comparison of tumor-associated trypsin inhibitor (TATI) immunoassays [J]. Clin Chim Acta, 2012,413(15-16):1244-1248. DOI: 10.1016/j.cca.2012.04.001.
doi: 10.1016/j.cca.2012.04.001 |
[41] |
Ravela S, Valmu L, Domanskyy M, et al. An immunocapture-LC-MS-based assay for serum SPINK1 allows simultaneous quantification and detection of SPINK1 variants[J]. Anal Bioanal Chem, 2018,410(6):1679-1688. DOI: 10.1007/s00216-017-0803-y.
doi: 10.1007/s00216-017-0803-y pmid: 29318362 |
[42] | Faisal FA, Kaur HB, Tosoian JJ, et al. SPINK1 expression is enriched in African American prostate cancer but is not associated with altered immune infiltration or oncologic outcomes post-prostatectomy[J]. Prostate Cancer ProstaticDis, 2019,22(4):552-559. DOI: 10.1038/s41391-019-0139-0. |
[1] | Liu Na, Kou Jieli, Yang Feng, Liu Taotao, Li Danping, Han Junrui, Yang Lizhou. Clinical value of serum miR-106b-5p and miR-760 combined with low-dose spiral CT in the diagnosis of early lung cancer [J]. Journal of International Oncology, 2024, 51(6): 321-325. |
[2] | Qian Xiaotao, Shi Ziyi, Hu Ge, Wu Xiaowei. Efficacy of consolidation chemotherapy after radical radiotherapy and chemotherapy for stage Ⅲ-ⅣA esophageal squamous cell carcinoma: a real-world clinical study [J]. Journal of International Oncology, 2024, 51(6): 326-331. |
[3] | Yang Mi, Bie Jun, Zhang Jiayong, Deng Jiaxiu, Tang Zuge, Lu Jun. Analysis of the efficacy and prognosis of neoadjuvant therapy for locally advanced resectable esophageal cancer [J]. Journal of International Oncology, 2024, 51(6): 332-337. |
[4] | Yuan Jian, Huang Yanhua. Diagnostic value of Hp-IgG antibody combined with serum DKK1 and sB7-H3 in early gastric cancer [J]. Journal of International Oncology, 2024, 51(6): 338-343. |
[5] | Chen Hongjian, Zhang Suqing. Study on the relationship between serum miR-24-3p, H2AFX and clinical pathological features and postoperative recurrence in liver cancer patients [J]. Journal of International Oncology, 2024, 51(6): 344-349. |
[6] | Guo Zehao, Zhang Junwang. Role of PFDN and its subunits in tumorigenesis and tumor development [J]. Journal of International Oncology, 2024, 51(6): 350-353. |
[7] | Zhang Baihong, Yue Hongyun. Advances in anti-tumor drugs with new mechanisms of action [J]. Journal of International Oncology, 2024, 51(6): 354-358. |
[8] | Xu Fenglin, Wu Gang. Research progress of EBV in tumor immune microenvironment and immunotherapy of nasopharyngeal carcinoma [J]. Journal of International Oncology, 2024, 51(6): 359-363. |
[9] | Wang Ying, Liu Nan, Guo Bing. Advances of antibody-drug conjugate in the therapy of metastatic breast cancer [J]. Journal of International Oncology, 2024, 51(6): 364-369. |
[10] | Zhang Rui, Chu Yanliu. Research progress of colorectal cancer risk assessment models based on FIT and gut microbiota [J]. Journal of International Oncology, 2024, 51(6): 370-375. |
[11] | Gao Fan, Wang Ping, Du Chao, Chu Yanliu. Research progress on intestinal flora and non-surgical treatment of the colorectal cancer [J]. Journal of International Oncology, 2024, 51(6): 376-381. |
[12] | Fan Zhipeng, Yu Jing, Hu Jing, Liao Zhengkai, Xu Yu, Ouyang Wen, Xie Conghua. Predictive value of changes in inflammatory markers for prognosis in patients with advanced non-small cell lung cancer treated with the first-line immunotherapy plus chemotherapy [J]. Journal of International Oncology, 2024, 51(5): 257-266. |
[13] | Liu Jing, Liu Qin, Huang Mei. Prognostic model construction of lung infection in patients with chemoradiotherapy for esophageal cancer based on SMOTE algorithm [J]. Journal of International Oncology, 2024, 51(5): 267-273. |
[14] | Yang Lin, Lu Ning, Wen Hua, Zhang Mingxin, Zhu Lin. Study on the clinical relationship between inflammatory burden index and gastric cancer [J]. Journal of International Oncology, 2024, 51(5): 274-279. |
[15] | Wang Junyi, Hong Kaibin, Ji Rongjia, Chen Dachao. Effect of cancer nodules on liver metastases after radical resection of colorectal cancer [J]. Journal of International Oncology, 2024, 51(5): 280-285. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||